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Abstract

The confidence-rating recognition memory paradigm has been used extensively for testing theories of memory. Current methods for analyzing
confidence-rating data require that data be aggregated over participants, items, or both. We show that this aggregation threatens claims of curvature
in zROCs and distorts estimates of signal-distribution variance—the very findings that are used to make fine-grained distinctions between
competing models. We develop a hierarchical signal detection model that accounts for variability from the sampling of participants and items
in addition to variability from the underlying psychological processes. The model provides for accurate signal detection parameter estimates. With
accurate estimates, the validity of benchmark findings in recognition memory may be assessed.
c© 2008 Elsevier Inc. All rights reserved.

The study of human memory has had a long and rich history
in psychology. One influential paradigm for testing theories
of memory is the confidence-rating recognition memory
paradigm. Participants judge whether a presented word was
previously studied or not, and then rate their confidence
in this judgment. Researchers have used this paradigm to
test various positions about representations in memory (e.g.,
Ratcliff, McKoon, & Tindall, 1994), whether there are one or
multiple memory processes (e.g., Yonelinas, 1999; Yonelinas
& Parks, 2007), and how recognition judgments are made
(e.g., Glanzer & Adams, 1990). The most widely used
model for drawing conclusions about mnemonic processes
from the confidence-rating recognition-memory paradigm is
the theory of signal detection (SDT; Green & Swets, 1966).
In conventional designs and analyses, researchers aggregate
results over items, participants, or both, to obtain estimates of
hit and false alarm rates. We show how this aggregation leads
to asymptotic distortion in estimates of SDT sensitivity (d ′) and
variability (σ ) parameters. This demonstration suggests that
much of the theoretical insight gained from the confidence-
rating paradigm is tenuous. To provide for accurate SDT
analysis of the paradigm, we advocate a hierarchical SDT
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model in which participant and item variability, as well as
variability in processing, can be accounted for simultaneously.
The development here is similar to our recent development for
the process dissociation paradigm (Rouder, Lu, Morey, Sun,
& Speckman, in press). We showed that while aggregation
across disparate items leads to asymptotic distortion in the
process-dissociation parameters, a Bayesian hierarchical model
provides for accurate analysis.

We start with the supposition that there is substantial
variation across people and items in typical recognition
memory tasks. It is highly plausible that participants vary
in their mnemonic abilities and in their biases. Likewise,
it is highly plausible that items vary in their memorability
as well as the biases they induce in processing. Because
both participants and items presumably vary, each participant-
by-item combination has its own characteristic memorability
and bias. It is therefore desirable to estimate parameters
for each participant-by-item combination. Participant-by-item
combinations, however, are not replicated in standard designs.
As a consequence, researchers aggregate data over items or
participants to estimate item-averaged or participant-averaged
parameters, respectively. We will show how this aggregation
leads to distortion which, in turn, threatens the validity of
benchmark findings that have guided model development.

Our critique of aggregation and the need for the hierarchical
model are both vested in the presumption of item variability.
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We believe there is good evidence that items vary in important
ways in memory experiments. One source of evidence comes
from the well-known effect of word frequency on memorability.
Participants remember low-frequency words better than high-
frequency words, and the effect is often surprisingly large
(e.g., Peters, 1936; Scarborough, Cortese, & Scarborough,
1977; Schwartz & Rouse, 1961; Shepard, 1967). Whereas
most experimenters simply classify words as “high” or “low”
frequency, there is often much unmodeled variation within each
category. A second source of evidence comes from our recent
work in process dissociation (Rouder et al., in press). We fit a
model, not unlike the one presented here, to stem completion
data to measure recollective and automatic processes. Not only
did we find substantial item variability within an experiment,
item scores were correlated at r = .7 across experiments
with different encoding instructions and different participants.
Items in our process dissociation experiments had divergent and
stable recollection and automatic effects. There is no reason to
doubt that the same holds for recognition memory.

1. The theory of signal detection in recognition memory

Although SDT serves as a model of memory in its own
right (Kintsch, 1967), SDT analysis also often forms the link
between data and theory for more complex analyses. In SDT,
when an item is studied, its mnemonic strength or familiarity
is increased. These strengths are distributed as normals, with
the means and variances depending on whether an item was
studied or not. Without any loss of generality, the mean
and variance of the nonstudied-item distribution is set to 0.0
and 1.0, respectively, and these settings scale the memory-
strength dimension. The mean and variance of the studied-item
distribution are free parameters denoted d ′ and σ 2, respectively.
An example of these distributions is provided in the top panel
of Fig. 1. To produce a response, the participant sets criteria on
memory strength. In the two-choice case in which participants
decide whether an item was studied or not, there is a single
criterion. A “studied-item” response is produced if strength is
above this criterion; a “nonstudied-item” response is produced
otherwise. In the confidence-rating task, multiple criteria are
placed on memory strength. An example of the signal detection
model for a confidence-rating task is displayed in the top
panel of Fig. 1. The participant’s response (“Sure Nonstudied”,
“Believe Nonstudied”, “Believe Studied”, or “Sure Studied”) is
determined by where the mnemonic strength lies relative to the
criteria.

A conventional representation of data from the confidence
rating task is the receiver-operating characteristic (ROC) and
its z-score transform (zROC). To derive SDT model predictions
for ROC and zROC plots, let H be the probability that a
studied item evokes a familiarity greater than a criterion c, and
let F denote the probability that an unstudied item evokes a
familiarity greater than c. We define the criterion c as relative to
0, the mean of the nonstudied-item distribution. Consequently,
H and F are

H = Φ
(

d ′
− c

σ

)
,

Fig. 1. The signal detection model. Top: The conventional signal detection
model for an experiment with 4 response options. Bottom: The fixed-criteria
parametrization in which the outer criteria are set to 0.0 and 1.0.

F = Φ (−c) ,

where Φ is the cumulative distribution function of the standard
normal distribution. Let h and f denote the respective
z-transformed probabilities, i.e., H = Φ(h) and F = Φ( f ).
Then,

h =
d ′

− c

σ
, (1)

f = −c. (2)

The zROC plot is a plot of h as a function of f when c is varied
and d ′ and σ are held constant. It is clear from (1) and (2) that
the SDT model predicts linear zROCs with a slope of 1/σ and
an intercept of d ′/σ . The solid line in Fig. 2 is the zROC from
a signal detection model with d ′

= 2 and σ = 1; the line has an
intercept of 2, and a slope of 1.

2. Benchmark findings in the literature

The form of zROCs is used to constrain theories of
recognition memory (cf. Malmberg, 2002). Yonelinas and
Parks (2007) note that zROCs display several regularities
in recognition memory experiments. We follow them in
highlighting three benchmark findings:

1. Empirical zROC curves are approximately linear, but
sometimes show curvature (Ratcliff et al., 1994; Yonelinas,
1999). This curvature provides evidence for Yonelinas’
(1994) dual process theory of recognition memory, and
against other models such as signal detection theory.

2. Almost all empirical zROCs have a slope of less than 1,
indicating that the variance of the studied-item distribution
is greater than that of the nonstudied-item distribution. This
result, popularized by Ratcliff, Sheu, and Grondlund (1992),
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Fig. 2. The effects of aggregation on zROC curves. The straight line labeled
“True” corresponds to a signal detection model with d ′

= 2 and σ = 1. The
curve labeled “Case I” results from aggregating over items with different d ′

values. The curve labeled “Case II” results from aggregating over items with
different criteria.

has been replicated many times. Glanzer, Kim, Hilford, and
Adams (1999), for example, reported greater variance for
studied items in 40 out of 41 experiments they reviewed.
This result is concordant with theories that predict σ > 1
(e.g., MINERVA2, Hintzman, 1986) and is discordant with
those that predict σ = 1 (e.g., TODAM, Murdock, 1982).

3. The slopes and intercepts of empirical zROC curves are
often negatively correlated (Glanzer et al., 1999; Heathcote,
2003; cf. Ratcliff et al., 1994). Specific relations among the
slope and intercept serve as evidence for and against various
formal models (Heathcote, 2003; Ratcliff et al., 1992).

In the next section, we show how these benchmark findings
using zROCs could simply be the result of aggregation. If the
benchmark findings are artifactual, then theories have been
built, supported, and rejected on the basis of aggregation
artifacts.

3. The effects of aggregation

In this section, we document how aggregation distorts zROC
plots and the resulting estimates of signal detection parameters.
Before doing so, we draw a sharp distinction between variation
in psychological process from variation at other levels, such as
that from sampling items or participants. The distinction is best
illustrated by a thought experiment. Imagine it were possible
to produce independent and identically distributed replicates
of item-by-participant combinations in a recognition memory
paradigm. Clearly this thought experiment is impossible in
reality; replicates would be contaminated by learning and
priming effects, which would violate the independent-and-
identically-distributed assumption. Nonetheless, if it were
possible, we would observe variability across the replicates.
This variability would not reflect variability in sampling items
and participants, but would only reflect variability in the
mnemonic processes.

Many researchers assume, at least implicitly, that the results
of recognition memory experiments reflect the underlying
variability solely in mnemonic processes. Though these
researchers do not explicitly deny item variability, there is the
tacit belief that this unmodeled variability does not affect ROC
and zROC curves if enough data are collected and items are
counterbalanced. In this view, aggregation is not problematic
because in the limit, a true assessment of the mnemonic
processes may be obtained. Indeed, when researchers use the
benchmark findings of σ > 1 to revise mnemonic theories
(e.g. Murdock, 1993), they are implicitly assuming this finding
reflects mnemonic variation and not item variation. Likewise,
if curvature of zROCs curves is interpreted as evidence for
the presence of two processes, then, again, the interpretation
is conditioned on the implicit assumption that zROCs provide
an uncontaminated view of the mnemonic process. We call
this implicit assumption the optimist view of aggregated
recognition-memory data and show how it is flawed.

3.1. Threats to the optimist view

If sources of variability other than mnemonic process exist
in recognition memory experiments, then the optimist view
is incorrect. Malmberg and Xu (2006) describe the effects of
participant variability on the shape of ROC curves. Aggregating
data across variable participants affects estimates of the slopes
of zROC curves, thus affecting inferences made about the
mnemonic process by the optimist researcher. Malmberg and
Xu’s critique is also applicable to aggregation across items. We
highlight the case of item variability because researchers most
often aggregate over items in order to draw conclusions about
psychological process. We consider two ways in which items
can vary: In Case I items differ in their memorability; in Case
II items induce different biases. We take these cases in turn.

Case I: Items vary in memorability. Consider a study list in
which, unknown to the researcher, half of the items are easy
and half are hard. To make the situation concrete, let d ′ for the
easy and hard items be 3 and 1, respectively, and let σ = 1
for all items. Assume the researcher aggregates the results
across all items. If aggregation has no ill effects, then estimates
from aggregated data should yield the mean memorability of
d ′

= 2 and a standard deviation of σ = 1 in the large-sample
limit. Moreover, the zROC curves of aggregated data should be
straight lines with a slope of 1 and an intercept of 2.

Unfortunately, aggregated data yield neither average
parameter values nor the appropriate zROC curve, even in the
large-sample limit. Consider, for example, the probabilities of
hits and false alarms for a criterion of c = 1. The probability
of a hit is .5 for difficult items and .977 for easy ones. The
probability of a hit from aggregated data is therefore (.5 +

.977)/2 = .739. The probability of a false alarm is .16 for
both types of items, hence the probability of false alarm from
aggregated data is .16. The z-transforms of these probabilities
from aggregated data are .639 and −1.0 for hit and false alarms,
respectively. The point defined by these values is denoted by
the symbol “4” in Fig. 2. Unfortunately, this point does not
fall on the line labeled “True”. The line labeled “Case I” in
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Fig. 2 is the zROC curve from aggregated data. The zROC from
aggregation is not perfectly straight; it has a slight degree of
curvature. The best-fitting line has a slope and an intercept of
.72 and 1.46, respectively. These values correspond to signal
detection parameters of d ′

= 2.03 and σ = 1.39. The resulting
value of d ′ from aggregated data is very near the true average
of d ′

= 2, but the resulting value of σ is far too high. Because
we used true probabilities to construct zROCs, this upward bias
is asymptotic; that is, it exists even in arbitrarily large data sets.

Case II: Items vary in bias. We consider the case that items
vary in their baseline strength. Suppose an item on a memory
test was recently encountered by a participant prior to the
experiment. This recent encounter adds strength; for example,
a nonstudied recently-encountered item may have strength
distributed as a normal with a mean of .5 rather than 0.
Likewise, if this recently-encountered item is studied, the
strengths are distributed with a mean of d ′

+ .5 rather than d ′.
In the conventional signal detection model, where the mean of
the nonstudied distribution is fixed, these baseline differences
in mnemonic strength are manifest as criteria shifts; that is, a
recently-encountered item has the same sensitivity and variance
as other items but a criterion that is lowered (in the above
example, the criteria would be lowered by .5). Singer, Gagnon,
and Richard (2002) found evidence for trial-by-trial criteria
shifts in memory for elements of stories. We find it plausible
that item-based effects exist in simpler recognition memory
experiments as well.

To demonstrate how variability in criteria distorts zROCs,
we once again consider two types of items. The recently-
encountered items and not-recently-encountered items have
d ′

= 2 and σ = 1, but the recently-encountered items induce a
criterion 2 units lower than the not-recently-encountered ones.
The data are aggregated across items, hence the probability of
hits and false alarms are averages across different criteria. The
resulting zROC curve from the aggregated data is shown by the
line labeled “Case II” in Fig. 2. If aggregation across criteria has
no ill effects, then the curve will lie on the straight line denoted
“True”. As seen in Fig. 2, the curve deviates substantially and
has a fair degree of convexity. The resulting values of d ′ and
σ obtained from this curve by a linear fit are 1.43 and 1.01,
respectively. The value of σ is sufficiently accurate, but the
value of d ′ is substantially lower than the true value of 2.0.

The above demonstrations are idealized in that item
variability is assumed to occur in either criteria or memorability,
but not in both. It is plausible, however, that items vary in both
criteria and memorability. In this case, under the optimist view,
a combination of distortions will occur: 1. estimates of σ will be
too high; 2. the zROC curves will be concave; and 3. estimates
of d ′ will be too low. The first two distortions are especially
problematic from a theoretical perspective as they correspond to
the first two benchmark findings. The implication is that these
benchmark findings may not reflect the underlying mnemonic
process, but instead, may reflect the influences of extraneous
sources of variation, such as those from participants and items.

The above demonstration shows that ROC dynamics may
critically reflect multiple sources of variation. This fact
has been acknowledged by a minority of authors including

Malmberg and Xu (2006), Ratcliff et al. (1994), and Wixted
(2007). For instance, Wixted (2007) considers familiarity
distributions to reflect both mnemonic and item variation.
Under this view, the results of the above demonstrations are not
surprising—whereas item variability contributed to the studied-
item distribution alone, it is expected that the resulting σ

estimate is greater that 1. We refer to this view, that aggregated
data can only inform about the convolution of sources of
variation, as the realist view of aggregated recognition memory
data.

Although this view is realistic, it is also disheartening, as
its basic tenet is that it is not possible to separate out different
sources of variation. Consequently, the benchmark findings are
ambiguous. For example, because it is unclear whether the
finding of σ > 1 reflects item variation or process variation,
this benchmark cannot be used to inform mnemonic theories.
Likewise, if curvature in zROC may be due to either item or
process variation, the curvature benchmark cannot be used to
differentiate between process models.

It is critical to emphasize three points regarding what may
be inferred from aggregated data: Under the optimist view,
1. The distortions are asymptotic and cannot be overcome by
running large experiments or by replication. 2. Because SDT is
a nonlinear model, parameter distortions occur in all estimation
methods that utilize aggregated rates, including maximum
likelihood (Dorfman & Alf, 1969; Heathcote, Raymond, &
Dunn, 2006). 3. Under the realist view, mnemonic process
may not be isolated from other sources of variance. It is these
pragmatic difficulties that motivate the need for the following
hierarchical process model.

4. A hierarchical confidence-rating signal detection model

In this section, we provide a hierarchical signal detection
model for accurate estimation of mnemonic processes as
distinct from other sources of variation. The key feature of
the model is that it simultaneously accounts for variability
on three levels: variability due to participants, variability
due to items, and variability in mnemonic processing. The
model is similar to the one proposed by Rouder and Lu
(2005) and Rouder, Lu, Sun, Speckman, Morey, and Naveh-
Benjamin (2007). These previous models were applicable to
dichotomous studied/nonstudied judgments, but could not be
applied to confidence-rating data. Moreover, these previous
models were not designed to clarify whether the existing
zROC benchmark findings reflect mnemonic variation or are
artifacts of aggregation. The extension to the confidence-rating
case with the inclusion of unequal variances is nontrivial and
required substantial development. In this section, we specify
the model. In the next section we provide algorithms for
analysis. Following that, we show through simulation that the
model provides accurate estimation even when aggregation-
based estimation fails to accurately reflect mnemonic variation.

The conventional signal detection model is shown in the top
panel of Fig. 1. We first discuss the case of a single participant
observing a single item. Let y denote the response with y =

1, . . . , K , where K denotes the number of response options.
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We assume K > 2 for the confidence-rating task. In addition
to sensitivity parameter d ′ and standard deviation σ , there are
K −1 criteria denoted c1, . . . , cK−1. The probability that y = k
is:

Pr(y = k | Not Studied) = Φ (−ck) − Φ (−ck−1) ,

Pr(y = k | Studied) = Φ
(

d ′
− ck

σ

)
− Φ

(
d ′

− ck−1

σ

)
,

where c0 = −∞ and cK = ∞.
The hierarchical model is most easily developed with

a reparametrization of the signal detection model. In the
conventional parametrization, the mean and variance of the
nonstudied-item distribution is set to fixed values that scale
the memory-strength space. In the reparametrization, the
outer two criteria, c1 and cK−1, are set to fixed values
that scale the memory-strength space and the mean and
variance of the nonstudied-item distribution are free to vary.
Consequently, we refer to this reparametrization as the fixed-
criteria parametrization of SDT. Without any loss of generality,
the fixed criteria may be set to c1 = 0 and cK−1 = 1. The
means and variances of the nonstudied-item and studied-item
distributions are denoted by d(n), d(s), σ 2

n and σ 2
s , respectively.

Sensitivity is therefore given as d ′
=

d(s)
−d(n)

√
σ 2

n
. The bottom

panel of Fig. 1 shows the fixed-criteria reparametrization.
This reparametrization is discussed further in the General
Discussion.

We extend the fixed-criteria parametrization to account for
both participant and item effects. Let yi j be the response of the
i th participant to the j th item, i = 1, . . . , I, j = 1, . . . , J .
The probabilities of making the kth response to nonstudied and
studied items are:

Pr(yi j = k | Not Studied) = Φ

(
d(n)

i j − cik√
σ 2

n

)

−Φ

(
d(n)

i j − ci(k−1)√
σ 2

n

)
, (3)

Pr(yi j = k | Studied) = Φ

(
d(s)

i j − cik√
σ 2

s

)

−Φ

(
d(s)

i j − ci(k−1)√
σ 2

s

)
, (4)

for k = 1, . . . , K . Parameters d(n)
i j and d(s)

i j are means
of the nonstudied-item and studied-item distribution for the
i j th participant-by-item combination, respectively. Parameters
ci`, ` = 1, . . . , K − 1 are criteria for the i th participant.
Throughout this article, parameters indexed by n are related
to the nonstudied-item distribution, and those indexed by s are
related to the studied-item distribution.

Clearly, it is not possible to estimate all of the distribution
means (d(n)

i j and d(s)
i j ) without further constraint. This constraint

is provided by treating participant and item effects as additive:

d(n)
i j = µ(n)

+ α
(n)
i + β

(n)
j , (5)

d(s)
i j = µ(s)

+ α
(s)
i + β

(s)
j , (6)

where µ(n) and µ(s) are grand means, α
(n)
i and α

(s)
i are zero-

centered participant effects, and β
(n)
j and β

(s)
j are zero-centered

item effects. We do not restrict µ(n) < µ(s). Although the
restriction is plausible, it would greatly complicate analysis (see
Chen & Shao, 1998) and would be for little gain.

Participant and item effects are treated as random such that
results may be generalized to novel people and items:

α
(n)
i

i id
∼ Normal(0, σ 2

α(n)), (7)

α
(s)
i

i id
∼ Normal(0, σ 2

α(s)), (8)

β
(n)
j

i id
∼ Normal(0, σ 2

β(n)), (9)

β
(s)
j

i id
∼ Normal(0, σ 2

β(s)). (10)

Overall sensitivity is given as

d ′
=

µ(s)
− µ(n)√
σ 2

n

. (11)

This expression for overall sensitivity is consistent with
unequal-variance signal detection, where the unit for measuring
discriminability is the standard deviation of the nonstudied
distribution.

The assumption of additivity in Eqs. (5) and (6) is common
and has been successful in previous models of signal detection
(Rouder & Lu, 2005; Rouder, Lu et al., 2007).

Because criteria are not estimated separately for each item,
it may appear as though the plausible variation in item baseline
strength mentioned previously is not modeled. The model,
however, readily accommodates these effects. For example, the
top panel of Fig. 3 shows a baseline effect as a coordinated
increase in the means of both d(n) and d(s). These baseline shifts
are equivalent to effects on criteria: the effect shown in the top
panel is equivalent to shifting criteria to increase the probability
of a “studied” response regardless of whether the item was
studied or not. In general, baseline effects (or equivalently,
response biases) are reflected by positive correlations between
β

(n)
j and β

(s)
j for items and positive correlations between α

(n)
i

and α
(s)
i for participants.

The dependence of distribution means on both items and
participants provides for a large degree of flexibility. This
flexibility may be demonstrated by consideration of the mirror
effect (Glanzer & Adams, 1990). The mirror effect is the
phenomenon that conditions resulting in increased hit rates
also result in decreased false-alarm rates. A mirror effect
may be modeled as a negative correlation between d(s) and
d(n) (see the bottom panel of Fig. 3). One advantage of the
current parametrization is that mirror effects across conditions,
participants, and items may be independently assessed.

The model outline above accounts for item and participant
variability. It is plausible that other sources of variance exist
in recognition memory experiments, such as study-test lag.
If important covariates are left out, the nonprocess variance
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Fig. 3. Baseline (response bias) and mirror effects are accounted for by the
inclusion of participant and item effects on distribution means. Top: Increasing
the means of both distributions reflects a liberal response bias. Bottom: Mirror
effect results from a decrease in the mean of the nonstudied-item distribution
and an increase in the mean of the studied-item distribution.

will continue to contaminate estimates of process variance.
Although we did not include other covariates in Eqs. (5) and
(6), it is straightforward to include them in a model analysis.
Parameters may be added to Eqs. (5) and (6), along with
appropriate priors analogous to Eqs. (7)–(10). The design
matrix is then expanded to accommodate the new parameters
and known covariates. In this way, researchers may assess the
relative importance of covariates of interest.

5. Model analysis

The hierarchical confidence-rating model of (3) through
(10) is analyzed in the Bayesian framework with Gibbs
sampling (Gelfand & Smith, 1990). Because the development
is Bayesian, priors are needed for parameters µ(n), µ(s), σ 2

s ,
σ 2

n , σ 2
α(n) , σ 2

α(s) , σ 2
β(n) , and σ 2

β(s) . In this section, we provide and
justify priors, present the full conditional posterior distributions
of each parameter, and provide sampling algorithms for
estimating the marginal posterior distribution of the parameters.

5.1. Priors

We place normal priors on the grand means of the
nonstudied- and studied-item distributions:

µ(n), µ(s) i id
∼ Normal(0, σ 2

µ).

We place inverse gamma priors on variance parameters:

σ 2
n , σ 2

s
iid
∼ IG(a, b),

σ 2
α(n) , σ

2
β(n) , σ

2
α(s) , σ

2
β(s)

i id
∼ IG(e, f ).

Values of σ 2
µ, a, b, e and f must be chosen before analysis.

As long as the value of σ 2
µ is sufficiently large, the prior is

approximately noninformative. We use σ 2
µ = 10,000 though

other large values will yield the same results. In reasonable
sample sizes, we recommend values of a = e = 2 and
b = f = 1. These values yield priors with a mean of 1.0 and
an infinitely large variance. With these choices for (a, b, e, f ),
the priors are vaguely informative, but this information has a
minimal effect on the posterior means for variance parameters.

5.2. Conditional posterior distributions

The following notation is used in deriving the conditional
posterior distributions. Parameters in bold type indicate a vector
of parameters or data; for example, y denotes the vector of all
data. Let si j indicate whether the j th item for the i th participant
was studied (si j = 1) or not (si j = 0). Derivation of conditional
posterior distributions is greatly aided by introducing a set of
latent variables. Following Albert and Chib (1993), let wi j be
related to yi j as follows:

(yi j = k) ⇐⇒ (ci(k−1) ≤ wi j < cik).

Random variables wi j are distributed as normals:

wi j
indep.
∼

{
Normal(d(n)

i j , σ 2
n ), si j = 0,

Normal(d(s)
i j , σ 2

s ), si j = 1.

With these definitions, it is obvious that

Pr(yi j = k) = Pr(ci(k−1) ≤ wi j < cik)

=


Φ

(
d(n)

i j − cik√
σ 2

n

)
− Φ

(
d(n)

i j − ci(k−1)√
σ 2

n

)
, si j = 0,

Φ

(
d(s)

i j − cik√
σ 2

s

)
− Φ

(
d(s)

i j − ci(k−1)√
σ 2

s

)
, si j = 1,

which matches Eqs. (3) and (4). It is more convenient to derive
full conditional posterior distributions conditioned on w than
on y.

5.3. Conditional posterior distributions

The conditional posterior distributions are provided by the
following facts. The proofs are presented in the Appendix.
Throughout, let θ | · denote the full conditional posterior of
parameter θ .

Fact 1. The conditional posterior distribution of wi j is

wi j | ·
indep
∼{

TN(ci(yi j −1),ci(yi j ))
(µ(n)

+ α
(n)
i + β

(n)
j , σ 2

n ), si j = 0,

TN(ci(yi j −1),ci(yi j ))
(µ(s)

+ α
(s)
i + β

(s)
j , σ 2

s ), si j = 1,

where TN(a,b)(µ, σ 2) is a Normal(µ, σ 2) distribution truncated
below at a and above at b.
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Fact 2. Let Nn =
∑

i, j (1 − si j ) be the number of total trials
in which nonstudied items are tested. Let λn be the vector of
grand mean, participant, and item effects for nonstudied trials:
λn = [µ(n), (α(n))T , (β(n))T

]
T . Let wn be the vector of wi j for

nonstudied trials. Let Xn be the Nn × (I + J +1) design matrix
such that E[wn] = Xnλn . Let 6

(n)
w = σ 2

n I denote the covariance
matrix of wn . Finally, let 6

(n)
λ = diag(σ 2

µ, σ 2
α(n) , . . . , σ

2
β(n) , . . .).

Then the full conditional posterior distribution of λn is

λn | 6(n)
w , 6

(n)
λ , wn ∼ MVNormalq

(
1

σ 2
n

VnXT
n wn, Vn

)
,

where q = I + J + 1 and Vn =

(
1
σ 2

n
XT

n Xn + (6
(n)
λ )−1

)−1
.

Fact 3. Let Ns , λs , ws, Xs, and 6
(s)
λ be defined analogously to

the comparable quantities in Fact 2. Then the full conditional
posterior distribution of λs is

λs | 6(s)
w , 6

(s)
λ , ws ∼ MVNormalq

(
1

σ 2
s

VsXT
s ws, Vs

)
,

where Vs =

(
1
σ 2

s
XT

s Xs + (6
(s)
λ )−1

)−1
.

Fact 4. The full conditional posterior distributions of σ 2
n , σ 2

s ,

σ 2
α(n) , σ

2
α(s) , σ

2
β(n) , σ

2
β(s) are

σ 2
n | wi j , λ ∼ IG

(
a +

1
2

Nn, b +
1
2

∑
i, j

(1 − si j )(wi j

− µ(n)
− α

(n)
i − β

(n)
j )2

)
,

σ 2
s | wi j , λ ∼ IG

(
a +

1
2

Ns, b +
1
2

∑
i, j

si j (wi j

− µ(s)
− α

(s)
i − β

(s)
j )2

)
,

σ 2
α(n) | wi j , λ ∼ IG

(
e +

I

2
, f +

1
2

∑
i

(α
(n)
i )2

)
,

σ 2
α(s) | wi j , λ ∼ IG

(
e +

I

2
, f +

1
2

∑
i

(α
(s)
i )2

)
,

σ 2
β(n) | wi j , λ ∼ IG

(
e +

J

2
, f +

1
2

∑
j

(β
(n)
j )2

)
,

σ 2
β(s) | wi j , λ ∼ IG

(
e +

J

2
, f +

1
2

∑
j

(β
(s)
j )2

)
.

Fact 5. The full conditional posterior distribution of ci` is

ci` | ·
indep.
∼ Unif

(
max

j
[wi j such that yi j = `],

min
j

[wi j such that yi j = ` + 1]

)
, ` = 2, . . . , K − 2. (12)

5.4. Sampling algorithms

In Gibbs sampling, it is necessary to sample from the
conditional posterior distributions. Fortunately, all of the
conditional posterior distributions in Facts 1–5 are easy to
sample from and details are provided in Rouder, Lu et al.
(2007). Although sampling is straightforward, the resulting
MCMC chains show a large degree of autocorrelation,
especially in the criteria (see Fig. 5, panels A and B). A
high degree of autocorrelation is undesirable because obtaining
adequate convergence requires a large number of Gibbs
sampling iterations.

The source of the autocorrelation may be diagnosed. The
distribution of ci`|· in Eq. (12) is uniform between two
values: the maximum wi j in the response category below
the criterion, and the minimum wi j in the response category
above the criterion. As shown in Fig. 4, from iteration to
iteration, the maximum latent value in response category k and
minimum latent value in category k + 1 will be close to one
another, restricting the range of the full conditional posterior
distribution. Because the range of the distribution is restricted,
samples of ci` will change very little from iteration to iteration
in the Gibbs sampler. In Fig. 4, each response category contains
20 responses; the problem gets worse with more responses in
each category. The result is high autocorrelation in the criteria
chains, as shown in Fig. 5, panels A and B.

In order to mitigate this autocorrelation, we can modify the
sampling scheme. Instead of sampling from the full conditional
posterior of ci` in Fact 5, we sample from the conditional
distribution∫

w
[ci, w | λn, λs, σ

2
n , σ 2

s , y] dw = [ci | λn, λs, σ
2
n , σ 2

s , y] (13)

on every iteration of the Gibbs sampler. Integrating over the
latent variables leads to more efficient MCMC chains (Holmes
& Held, 2006). Let c(t)

i` be a sample of the `th criterion for
the i th participant, on the t th iteration of the MCMC chain.
On each iteration t , the following Metropolis–Hastings step is
implemented to sample from (13).

Step 1. For each participant i , sample K −3 independent values
z(t)

i2 , . . . , z(t)
i(K−2) from a Normal(0, σ 2

d ) distribution. The value

σ 2
d is chosen before analysis.

Step 2. Let c∗(t)
i` = c(t−1)

i` + z(t)
i` for ` = 2, . . . , K − 2. The

parameter c∗(t)
i` serves as a proposal for a new sample of ci`.

Step 3. For each participant, check that all proposal criteria are
in the correct order, i.e. c∗(t)

i` < c∗(t)
i(`+1) for ` = 1, . . . , K − 1. If

the criteria are out of order for participant i , set bi = 0 and skip
Step 4 for participant i .

Step 4. For each participant, compute the likelihood of the
model given the proposal criteria c∗(t)

i` , and the likelihood of
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Fig. 4. Source of autocorrelation in criteria chains. Panels from top to bottom represent successive MCMC iterations. Dashed and dotted lines represent latent
variables wi j in categories k and k + 1, respectively. The shaded box is a uniform distribution from which criterion k + 1 is sampled.

the model given the samples c(t−1)
i` , then compute its ratio, bi :

bi =

J∏
j=1


Φ

(
c∗(t)

i(yi j )
−d(s)

i j
√

σ 2
s

)
− Φ

(
c∗(t)

i(yi j −1)
−d(s)

i j
√

σ 2
s

)

Φ

(
c(t−1)

i(yi j )
−d(s)

i j
√

σ 2
s

)
− Φ

(
c(t−1)

i(yi j −1)
−d(s)

i j
√

σ 2
s

)


si j

×

J∏
j=1


Φ

(
c∗(t)

i(yi j )
−d(n)

i j
√

σ 2
n

)
− Φ

(
c∗(t)

i(yi j −1)
−d(n)

i j
√

σ 2
n

)

Φ

(
c(t−1)

i(yi j )
−d(n)

i j
√

σ 2
n

)
− Φ

(
c(t−1)

i(yi j −1)
−d(n)

i j
√

σ 2
n

)


1−si j

.

(14)

Step 5. For each participant, accept the proposal criteria c∗(t) as
the new sample for the criteria c(t) with probability min(bi , 1).
Otherwise, let c(t)

= c(t−1).
Because the expression bi is not dependent on latent data

w, this source of autocorrelation is eliminated. Fig. 5, panels C
and D, show a sample of a chain for a selected criterion and
its autocorrelation function. As can be seen, the new sampling
scheme is highly effective.

The value of σ 2
d must be chosen before the analysis. Some

values of σ 2
d are more effective than others. If the value is too

high, values of c∗(t)
i` are unreasonably large or small, and the

candidate is rejected too often. If the value is too low, candidates
do not deviate enough from the last sample and the chains
will be highly autocorrelated. We recommend that researchers
experiment with several values of σ 2

d until an acceptance rate
(Step 5) between 35% and 45% is achieved. In our experience

this experimentation takes a matter of minutes even in large-
sized samples.

Code in the C language and a precompiled Windows
executable for analyzing data with the hierarchical model are
available at www.missouri.edu/˜pcl/code/.

5.5. Simulations

To test the performance of the model, we performed two
simulation studies. The first simulation was designed to assess
whether the model yields accurate estimates of signal detection
parameters. The data were generated from and analyzed with
the fixed-criteria hierarchical signal-detection model. A second
simulation was designed to assess whether model analysis
is robust to psychologically plausible misspecification. In the
model for generating data, item and participant baseline effects
were distributed as normals, but the mnemonic gain from study
was distributed as an exponential distribution. Data generated
this way violate the assumptions in (9) and (10).

In both simulations, hypothetical confidence rating data
were choices among K = 4 options. In each hypothetical data
set, 50 participants were tested on 100 items, half of which
were studied and half of which were not. The design matrix
was appropriately counterbalanced to ensure identifiability
(see Christensen, 1996). For each simulation, the process of
simulating data sets and estimating parameters was repeated
200 times.

We assessed how well the model recovered item and
participant effect parameters, criteria, overall sensitivity (d ′ in
Eq. (11)), and the ratio of standard deviations, denoted by
η =

√
σ 2

s /σ 2
n . The ratio η corresponds to σ in the conventional
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Fig. 5. A: Segment of the MCMC chain for a selected criterion with Gibbs sampling. B: Autocorrelation function for the chain with Gibbs sampling. C-D: Same as
A-B, with Metropolis–Hastings step.

SDT parametrization and the question at hand is whether η is
biased upward.

Simulation 1A. In Simulation 1A, data were generated from the
model with the following true values: d(n)

= −.5, d(s)
= 1.5,

σ 2
α(n) = σ 2

α(s) = σ 2
β(n) = σ 2

β(s) = .04, and σ 2
n = σ 2

s = 1.
Each participant’s sole free criterion c2 was sampled from a
beta distribution with parameters α = β = 10. Most of the
mass of this beta distribution is distributed between .3 and .7.

Simulation 1B. Simulation 1B was identical to Simulation
1A, except the true value of σ 2

s was set to 1.44. This choice
is motivated by the benchmark finding in the field that the
standard deviation of the studied-item distribution is often about
1.2 times that of the nonstudied-item distribution.

Figs. 6 and 7A–C show the results of Simulation 1A. Each
panel in Fig. 6 shows estimates of participant or item effects as
a function of true values. The points lie close to the diagonal,
indicating that these random effects are accurately recovered.
Fig. 7A shows estimates of criterion ci2. The model is able
to accurately recover criteria values. Fig. 7B shows how well
overall sensitivity (d ′) is estimated. The thick center points
denote posterior means of d ′ across the 200 replicates. These
are ordered and plotted as a CDF function. For example, the
median value of the posterior mean across the 200 replicates
is 2.02. The plot also shows 95% credible intervals (from
2.5% to 97.5%) on d ′. For the replicate corresponding to the
median posterior mean, the credible interval is (1.82, 2.22).
The points to the left and right of the thick point at 2.02
denote the endpoints of this credible interval. Therefore, the
plot shows how often the credible interval covers the true value

(denoted by a vertical line). We refer to these plots as CDF-
coverage plots. Two points are clear: (1) the posterior mean
estimate of d ′ is centered around the true value, and (2) the
95% credible intervals cover the true values approximately
95% of the time. Therefore, not only is the estimate accurate,
the model accurately recovers the degree of uncertainty in the
estimate. Fig. 7C shows the CDF-coverage plot for estimates of
η. Once again, the estimate is accurate and the coverage is good.
Therefore, parameter estimation from the hierarchical model is
highly satisfactory.

The results of Simulation 1B were equally good and the
majority of the plots are omitted for brevity. Fig. 7D shows
the CDF-coverage plot for estimates of η. In Simulation 1B,
the true value of η was 1.2 and the recovery is good. A
comparison of Fig. 7C and D reveal that even with moderate
sample sizes, the model can easily distinguish between the
equal-variance signal detection model and the inflated-variance
model suggested by the benchmark result of increased studied-
item variance. Therefore, the hierarchical model is well-suited
for assessing the true ratio of variances.

Simulation 2. Simulation 2 was designed to assess the
robustness of the model to a psychologically plausible
misspecification. All parameters had the same true values as
Simulation 1A with the following exception:

d(s)
i j = d(n)

i j + E (α)
i + E (β)

j ,

where E (α)
i and E (β)

j are all independent and identically
distributed standard exponential random variables. This data-
generation model makes the realistic assumption that the
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Fig. 6. Estimates of participant and item effects as a function of true value in Simulation 1A. Scatterplots of participant and item effects were thinned by factors of
5 and 10, respectively.

Fig. 7. Results of simulations. A: Estimates of middle criterion c2 as a function of true value for Simulation 1A. The scatterplot was thinned by a factor of 5. B:
CDF-coverage plot of overall sensitivity d ′. Thick points are posterior means of d ′ arranged as a cumulative distribution function across the 200 replicates. The
points to the sides of the posterior means denote the endpoints of the 95% credible interval sorted by posterior mean. The solid vertical line is the true value. C and
D: CDF-coverage plots of η in Simulation 1A (true value of η = 1) and Simulation 1B (true value of η = 1.2), respectively.
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Fig. 8. Results of Simulation 3. A: Estimates of α
(s)
i as a function of true value. B: Estimates of β

(s)
j as a function of true value. C: CDF-coverage plot of η. The

solid vertical line is the true value. D: CDF-coverage plots of item-aggregated ML estimates of σ with 95% confidence intervals. Scatterplots of participant and item
effects were thinned by factors of 5 and 10, respectively.

increase in strength from study can never be negatively valued,
and is similar to an informal model suggested by Wixted
(2007).

Fig. 8 shows the results of Simulation 2. Panels A and
B show estimates of α

(s)
i and β

(s)
j as a function of the

zero-centered true value. Most random effects are recovered
accurately with poor recovery only for extremely large values.
This inaccuracy is the direct result of misspecification—
the exponential distribution has more skew than the normal
assumed in the model. Importantly, this misspecification affects
the estimates of η only slightly. Panel C shows the CDF-
coverage plot of η estimates. The mean estimate of η shows
a small under-estimation of about 2.4%. This underestimation
is non-asymptotic; estimates of all parameters will converge
to the true value in the large-sample limit. To demonstrate
that this convergence is sufficiently rapid, we ran an additional
simulation with 400 items per participant and found the bias in
estimating η was reduced to. 2%. An experiment with 400 items
is large, but not unrealistic. Glanzer et al. (1999), for example,
report an experiment with 480 items per participant.

We also estimated standard signal detection model
parameters using maximum likelihood applied to item-
aggregated data. Fig. 8D shows the CDF-coverage plots for
the ML estimate of σ . The intervals between the small points
denote the 95% confidence intervals computed from the Fisher
information (Rice, 1998). The mean estimate of σ is 1.35, far
above the true value of 1. In fact, only a single confidence
interval in 200 (.5%) includes the true value. Unlike the small
bias in the hierarchical Bayesian estimates, this bias is not only
extreme; it is asymptotic. The reason for the poor performance

of ML is aggregation. In this simulation, the item effects are
more variable for studied than nonstudied items. The artifactual
increase in σ̂ in the ML analysis is due to an inability to
account for this increased variability. The aggregated analysis
includes item variability in the estimate of σ , severely inflating
the estimate.

5.6. General discussion

In this paper, we have provided an extension of Rouder
and Lu’s (2005) Bayesian hierarchical signal detection model
to account for participant, item, and process variability
in confidence-rating paradigms. We recommend researchers
use this approach as an alternative to aggregation. There
is one caveat needed, however, for application. There is
a subtle though important assumption in the fixed-criteria
parametrization. This assumption is most easily discussed
by contrast with a different and more general fixed-criterion
model. Consider a parametrization in which the interior
criterion is fixed to 0 and the standard deviation of the non-
studied familiarity distribution is fixed to 1.0. This model
has the same likelihood as the one we advocate; the natural
hierarchical priors, however, are more general than the model
we advocate. This generality may be seen by comparing the
number of parameters, including those in the prior. In the model
we advocate, there are 2I J + (K − 3)I + 2 parameters. In the
hierarchical extension of this alternative fixed-criteria model,
there are 2I J + I (K − 2) + 1 parameters. The difference
is I − 1 criterion parameters. This reduction in parameters
is achieved by assuming common scaling of criteria across
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people. With the more general priors, there is a noticeable bias
toward higher values of σ 2. The advocated model does not have
this bias. We do not know if the common scaling assumption is
warranted and urge practitioners to check residuals for evidence
of misspecification (see, for example, Morey, Rouder, and
Speckman (2008).

The presented critique of aggregation should not be
viewed as an idiosyncrasy of signal detection. The critique
that aggregation distorts inference has a long history in
mathematical psychology. Examples include the critique that
aggregation affects the form of learning curves (Estes, 1956;
Heathcote, Brown, & Mewhort, 2000), the fit of similarity-
choice models (Ashby, Maddox, & Lee, 1994), and the
assessment of selective influence in process dissociation
memory models (Curran & Hintzman, 1995; Rouder et al.,
in press). These critiques should be viewed as reflecting the
same underlying problem. Models of psychological process
are typically nonlinear. The assumption tacit in aggregation
is that aggregated data may be used to estimate averaged
parameter values. In nonlinear models, however, model outputs
of averaged parameter values are never the average of
outputs from individual parameters. Whereas all of these
critiques reflect the same underlying problem, process-oriented
hierarchical models such as the one presented here are broadly
applicable in many domains.
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Appendix

A.1. Joint posterior density

Let Y be the collection of all data and θ be the collection
of all model parameters. The joint posterior density of all
parameters given the data Y is

[θ | Y] ∝

I∏
i=1

J∏
j=1

[
K∑

k=1

I(yi j =k) I(ci(k−1)<wi j <cik )

]

×(σ 2
n )−

Nn
2 exp

{
−

1

2σ 2
n

(wn − Xnλn)T (wn − Xnλn)

}
×(σ 2

s )−
Ns
2 exp

{
−

1

2σ 2
s

(ws − Xsλs)
T (ws − Xsλs)

}
×|6

(n)
λ |

−
1
2 exp

{
−

1
2
λT

n (6
(n)
λ )−1λn

}
×|6

(s)
λ |

−
1
2 exp

{
−

1
2
λT

s (6
(s)
λ )−1λs

}
×(σ 2

n )−(a+1) exp
{
−

b

σ 2
n

}
(σ 2

s )−(a+1) exp
{
−

b

σ 2
s

}
×(σ 2

(α(n))
)−(e+1) exp

{
−

f

σ 2
α(n)

}

×(σ 2
(α(s))

)−(e+1) exp

{
−

f

σ 2
α(s)

}

×(σ 2
(β(n))

)−(e+1) exp

{
−

f

σ 2
β(n)

}

×(σ 2
(β(s))

)−(e+1) exp

{
−

f

σ 2
β(s)

}
. (15)

A.2. Full conditionals

Proof of Fact 1. Inspection of (15) reveals that

[wi j | ·]

[
K∑

k=1

I(yi j =k) I(ci(k−1)<wi j <cik )

]

× exp
{
−

1 − si j

2σ 2
n

(
wi j − µ(n)

− α
(n)
i − β

(n)
j

)2
}

× exp
{
−

si j

2σ 2
s

(
wi j − µ(s)

− α
(s)
i − β

(s)
j

)2
}

.

Using the definitions of d(n)
i j and d(s)

i j ,[
wi j | si j = 0, ·

]
∝ exp

{
−

1

2σ 2
n

(
wi j − d(n)

i j

)2
}

×

∑
k

[
I(yi j =k) I(ci(k−1)<wi j <cik )

]
,

[
wi j | si j = 1, ·

]
∝ exp

{
−

1

2σ 2
s

(
wi j − d(s)

i j

)2
}

×

∑
k

[
I(yi j =k) I(ci(k−1)<wi j <cik )

]
.

Because the sum can only be nonzero if yi j = k, the right hand
side can be further simplified as[
wi j | si j = 0, ·

]
∝ exp

{
−

1

2σ 2
n

(
wi j − d(n)

i j

)2
}

× I(ci(yi j −1)<wi j <ci(yi j ))
,[

wi j | si j = 1, ·
]

∝ exp
{
−

1

2σ 2
s

(
wi j − d(s)

i j

)2
}

× I(ci(yi j −1)<wi j <ci(yi j ))
.

The right-hand side expressions are proportional to the density
functions for the corresponding truncated normal distributions
in Eq. (12). �

Proof of Fact 2 and 3. Proof of Fact 2 and 3 are standard and
may be found in Gelman, Carlin, Stern, and Rubin (2004). �

Proof of Fact 4. Proof of Fact 4 is standard. For example, see
Rouder, Morey, Speckman, and Pratte (2007). �

Proof of Fact 5. The proof may be found in Albert and Chib
(1993). �
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