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Social scientists often compare subclasses of populations
or manipulatons. For example, in comparing task-completion
times across two levels of a manipulations, if one group has
faster overall mean response, it is natural to ask if the fastest
10% of the first group has a faster mean than the fastest 10%
of the second group, and so on. Delta plots, a type of quantile-
quantile residual plot used by psychologists, shed light on these
comparisons and motivate new notions of stochastic ordering.
If all percentile classes have faster mean in one group than in
the other, we say that there is coherent mean ordering and that
one group stochastically dominates the other in mean. A related
notion of coherent variance ordering can be defined similarly.
Violations of coherent orderings of means or variances are di-
agnostic signatures of complex effects and suggest further av-
enues of study. In this note, we derive necessary and sufficient
conditions for stochastic dominance in mean and variance. We
show that stochastic mean dominance is exactly equivalent to
the usual stochastic dominance and stochastic variance domi-
nance is equivalent to ordering of the first derivative of the quan-
tile functions.
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Statisticians are familiar with quantile plots and Q-Q plots
(e.g., Wilk and Gnanadesikan 1968). Psychologists have intro-
duced a variant called thedelta plot(De Jong 1994) that brings
into sharp focus differences in populations on a quantile scale.
The purpose of this note is to show how the delta plot can be
used to gain insight into experimental data and how it relates to
notions of stochastic ordering.

To define the delta plot, for simplicity we assume complete
information on two distributions,X and Y, with respective
quantile functionsQX(p) andQY(p). The population delta plot
is a graph ofQY(p) − QX(p) against [QX(p) + QY(p)]/2.
In practice, the delta plot is estimated from data using sample
quantile functions. Another closely related plot is a plot of dif-
ferencesQY(p)− QX(p) against probabilityp. One advantage
of plotting the difference in quantiles against the mean rather
than p is that the delta plot for two distributions in a location-
scale family is linear. This linearity property is also true for an
ordinary Q-Q plot, but the Q-Q plot is not as useful forisolating
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differences between two distributions.
There is considerable intuitive information in a delta plot.

Figure 1 shows three examples from data collected in our ex-
perimental psychology laboratory. The line labeled “Stroop” is
data from a classic task in psychology, the Stroop Task (Stroop
1935). In our case, participants were presented words in col-
ored fonts and had to report the color by pressing an appropri-
ate key. The words, however, were color terms such as “RED”
and “GREEN.” The task is easy if the font color matches the
term; for example, if the word “RED” is presented in red. The
task is quite difficult, however, if there is a mismatch; for exam-
ple, if the word “RED” is presented in green. In this latter case,
the meaning of the word interferes with the judgment of the
font color. The former and latter conditions are calledcongru-
entandincongruent, respectively, and the time taken to make a
judgment is called the response time (RT). The resulting delta
plot is the line labeled “Stroop” (see note below). LetX andY
denote response times to the congruent and incongruent condi-
tions, respectively. There is a stochastic ordering—X is said to
be stochastically smaller thanY if FX(t) ≥ FY(t) for all t . An
immediate consequence of stochastic ordering is that the quan-
tile functions are also ordered:QY(p) ≥ QX(p) for 0 < p < 1.
Thus,Y stochastically dominatesX if and only if the delta plot
is nonnegative.

Figure 1 also shows data from a second task, the Simon Task
(Simon 1969). [Note:A group of 38 participants observed 504
trials in the Stroop task followed by 504 trials in the Simon task.
Sample quantiles were estimated for each participant in each
condition in each task and averaged across participants. A sep-
arate group of 37 participants observed 84 trials in the phone-
number repetition Simon task.] The task is similar; the partici-
pant identifies the color of boxes, either red or green, by press-
ing a key on the left for red and on the right for green. These
colored boxes are presented on either the left or right side of the
display. In the congruent condition, the side of display matches
the correct answer; for example, a red square presented on the
left. In the incongruent condition, there is a mismatch between
the side of response and the side of presentation. The result-
ing delta plots for the comparison of congruent and incongru-
ent conditions are shown with the line labeled “SIMON.” In this
case, there appears to be no consistent stochastic ordering of the
distributions since the delta plot is both positive and negative.

Assuming these features of the delta plots are real and not just
random fluctuations, they suggest a few substantive directions
for exploration: Although the Simon and Stroop tasks are sim-
ilar, they may be mediated by different cognitive mechanisms.
The apparent lack of stochastic ordering for the Simon inter-
ference is a diagnostic clue to the underlying psychology. The
effect of congruency is to speed only the fast responses while
slowing the slower ones; this divergence suggests two distinct
mental processes. Ridderingkopf (2002), for instance, proposed
a theory in which the initial reaction to a color block is a quick,

c©2008 American Statistical Association DOI: 10.1198/000313008X333493 The American Statistician, August 2008, Vol. 62, No. 3 1



Average RT (ms)

E
ffe

ct
 (

m
s)

400 600 800 1000

0
50

10
0

15
0

Simon

Stroop

Simon + Phone

Figure 1. Delta plots for three conditions: Stroop interference, Simon
interference, and Simon interference with phone-number repetition.

automatic activation of the response on the side of presentation.
Following this reaction, there may be a slower compensating
tendency that relatively favors the opposite side (see also Huber
et al. 2002).

The final delta-plot line, labeled “Simon+Phone,” shows
the results of a modified Simon task (see previous note). In
this task, participants were asked to repeat over-and-over their
phone number during the trial. The resulting delta plots sug-
gest fairly complex dynamics that are concordant with a mix-
ture model. Consider the following speculation: For the major-
ity of responses, the repetition of the phone number proceeded
smoothly with no effect on Simon interference whatsoever. For
a minority of responses, however, the phone number repeti-
tion affected processing, perhaps through a misarticulation of
the phone number. In this case, the response to the square was
slowed, and the compensatory response was not engaged. The
observed delta plot is concordant with such a mixture.

The two-process suggestion from the Simon delta plot came
about because the mean of the fast responses, say the fastest
20% in each distribution, is smaller for the congruent condi-
tion. The mean of the slowest responses, say the slowest 20%,
is smaller for the incongruent condition. In a sense to be made
more precise below, the position of the delta plot provides for
comparison of meansat percentile levels. The mixture sugges-
tion from the Simon+Phone delta plot came about because the
slopes reverse. The slope of the delta plot provides for a com-
parison of varianceat percentile levels.The fastest 20% is more
variable in the congruent condition than the incongruent; the
slowest 20% is more variable for the incongruent than the con-
gruent. When conditional means or conditional variances re-
verse orderings across a distribution, it is surely a sign of com-
plex dynamics that warrant further investigation as diagnostic
phenomena.

1. ORDERING DISTRIBUTIONS

Recall that ranking distributions by their unconditional
means is equivalent to first-order stochastic dominance (FOSD)
under strong conditions, for example, in location parameter
families such as normal distributions with equal variances. A
delta plot that is everywhere positive shows that the distribu-
tions may be ranked by their means. However, the delta plot
suggests more. In comparing segments of the distributions such
as the fastest 10% of each, a positive delta plot would seem to
imply that FOSD implies dominance of the conditional means.
That is, the mean of the fastest 10% in one group is greater than
the mean of the fastest 10% in the other group, and so on. Simi-
larly, a positive slope to the delta plot suggests that the variance
of the plot for the fastest 10% would seem to imply that the
conditional variance of the fastest 10% in one group is greater
than the other, etc. We make can make these observations more
precise.

We define concepts ofcoherent mean ordering(CMO) and
coherent variance ordering(CVO) as follows. In the notation
above, letX andY denote two absolutely continuous random
variables with common support, CDFsFX and FY, and quan-
tile functions QX(p) = F−1

X (p) and QY(p) = F−1
Y (p) for

0 < p < 1. Finally, for 0 ≤ p < q ≤ 1, let Xpq denote
the truncated random variable with distribution(X | QX(p) ≤
X ≤ QX(q)), that is, with cdfFXpq(x) = (FX(x)− p)/(q− p)
for QX(p) ≤ x ≤ QX(q). The truncated variablesYpq are de-
fined analogously. We will term these families of distributions
thequantile-restricteddistributions ofX andY. Finally, we will
say that two distributionsFX andFY have the CMO property if
either

E(Xpq) ≥ E(Ypq) for all 0 ≤ p < q ≤ 1,

or
E(Ypq) ≥ E(Xpq) for all 0 ≤ p < q ≤ 1.

In other words, if two distributions have the CMO property, then
the ordering of the means for the unrestricted random variables
characterizes the ordering of the means for all of their quantile-
restricted distributions. If the CMO property holds and E(Y) ≥
E(X), then we will say thatY coherently dominatesX in mean,
or Y �m X. Figures 2(a) and 2(a) show cases where CMO holds
and is violated, respectively. In the following theorem, we show
that coherent mean ordering is equivalent to ordinary first-order
stochastic dominance.

An analogous property can be expressed for variance. We say
that two distributionsFX andFY havecoherent variance order-
ing (CVO) if either

var(Xpq) ≥ var(Ypq) for all 0 ≤ p < q ≤ 1,

or

var(Ypq) ≥ var(Xpq) for all 0 ≤ p < q ≤ 1.

If the CVO property holds and var(Y) ≥ var(X), then we will
say thatY coherently dominatesX in variance, orY �v X.

For instance, if the CVO property holds and RTs in a con-
gruent condition are more variable than RTs in an incongruent
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Figure 2. (a) and (b): Distributions for which coherent mean ordering holds and is violated, respectively. (c) and (d): Distributions for which
the coherent variances ordering holds and is violated, respectively. (e)–(h): Delta plots for (a)–(d), respectively.
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one, then there are no quantile intervals in which incongruent-
condition RTs are more variable than congruent-condition RTs.
Figure 2(c) and 2(d) show cases where the CVO property holds
and is violated, respectively. Theorem 1 shows the relationship
between the coherent ordering properties and the quantile func-
tions of the two distributions.

2. CHARACTERIZING CMO AND CVO

The two properties, coherent mean ordering and coherent
variance ordering, can be easily characterized in terms of the
quantile functions of the two distributions. We assume thatX
andY have continuous distributions with continuous probability
density functions supported on possibly infinite intervals. These
conditions imply thatQX and QY are continuously differen-
tiable on(0, 1).

Theorem 1. (a) A random variable Y coherently dominates X
in mean if and only if

QY(p) ≥ QX(p) for all 0 < p < 1, (1)

that is, if and only if Y is stochastically larger than X.

(b) A random variable Y coherently dominates X in variance if
and only if

Q′
Y(p) ≥ Q′

X(p) for all 0 < p < 1. (2)

This theorem provides a relationship between delta plots and
coherent orderings. Coherent mean ordering holds if and only
if the delta plot is either entirely positive or entirely negative.
Similarly, a consequence of (2) is that coherent variance order-
ing holds if and only if the delta plot is monotonic. In fact, if
one plots quantile differencesQX(p) − QY(p) againstp di-
rectly, then coherent variance ordering clearly implies the plot is
monotonic by (2). The delta plot is a graph ofQX − QY against
m(p) = [QX(p) + QY(p)]/2. Sinced(QY − QX)/dm =
(Q′

Y −Q′
X)/(dm/dp) andm(p) is strictly increasing,Q′

Y −Q′
X

andd(QY − QX)/dm have the same sign.
The equivalence between coherent mean ordering and

stochastic dominance in part (a) of Theorem 1 is not surpris-
ing. Clearly limq↓p E(Xpq) = Q(p), so CMO implies (1). Con-
versely, if strict inequality holds in (1) at somep0, it is not hard
to show that E(Xpq) < E(Ypq) for sufficiently small intervals
p0 ∈ (p, q). This idea can be extended to prove the converse.
An alternate proof is given in the Appendix.

3. RELATIONSHIP WITH STOCHASTIC DOMINANCE

The notion of stochastic dominance is familiar in the eco-
nomics and finance literature (e.g., Levy 1992) as well as the
statistics literature (e.g., Abadie 2002). The distribution ofY
stochastically dominates (i.e., is stochastically larger than) that
of X if FY(t) ≤ FX(t) for all t . Under the conditions of The-
orem 1, stochastic dominance is obviously equivalent to (1).
Thus, Theorem 1 gives an intuitive equivalent condition for
stochastic dominance.

Perhaps the simplest definition of ranking by conditional
mean values would be to condition on fixed intervals, say [a, b],
rather than fixed quantiles. However, this ranking is not equiv-
alent to FOSD. For example, supposeY ∼ uniform[−1, 1] and
X has pdf p(x) = 3/4 for −1 ≤ x ≤ 0, p(x) = x/2 for
0 < x ≤ 1, and p(x) = 0 elsewhere. It is easy to see that
the distribution ofY is stochastically larger than that ofX and
E(Y) > E(X). However, E(Y | 0 ≤ Y ≤ 1) = 1/2 < E(X |
0 < X < 1) = 3/4, so the conditional mean condition is vio-
lated.

Coherent variance dominance does not appear to be related
to any other conventional notion of stochastic dominance. Un-
der very special circumstances (such as normal distributions
with equal means), ranking by unconditional variance is equiv-
alent to second-order stochastic dominance (SOSD). [SOSD of
a nonnegative random variableY over another nonnegative ran-
dom variableX holds if and only if

∫ z

0
(1 − FX(x)) dx ≥

∫ z

0
(1 − FY(y)) dy

for all z > 0 (e.g., Bawa 1975).] In contrast, for distributions
obeying coherent variance ordering, ranking by unconditional
variance is equivalent to coherent variance domination.

Once again, the use of quantile (i.e., probability) infor-
mation appears to be crucial. For example, supposeY ∼
uniform[−2, 2], soQY(p) = 2(2p−1) andQ′

Y(p) = 4 for 0 <

p < 1. Next, letX have pdf f (x) = 3(x2 + 1)/8, −1 ≤ x ≤ 1,
and zero elsewhere. Becausef (x) ≥ 3/8 on the support of
X, the quantile function satisfiesQ′

X(p) = 1/ f (Q(p)) ≤ 8/3
for 0 < p < 1, andY coherently dominatesX in variance.
However, var(Y | −1 < Y < 1) = 1/3, which is less than
var(X | −1 < X < 1) = 2/5. Thus the conditional variance
condition on a fixed interval [a, b] does not necessarily hold for
CVO.

4. DISCUSSION

Consideration of coherent ordering and the associated delta
plot has substantive, theoretical, and practical advantages. From
a substantive viewpoint, violations of orderings imply complex
relations such as the presence of multiple processes or mixtures.
Satisfaction of orderings, in contrast, may be accounted for by
simpler relations. From a theoretical viewpoint, Theorem 1 pro-
vides a novel relationship between the first and second moments
and quantile functions. From a practical viewpoint, delta plots
provide a quick and convenient method of assessing orderings.

APPENDIX

For the proof of the theorem, we need two lemmas.

Lemma 1. Suppose X is a random variable with continuous
quantile function Q(p). If Q(p) is also differentiable a.e. with
Q′(p) > 0 for almost all p∈ (0, 1), then

E(Xk
pq) =

1

q − p

∫ Q(q)

Q(p)
xk f (x) dx

=
1

q − p

∫ q

p
Q(u)k du, 0 ≤ p < q ≤ 1,
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whenever the expectation exists.

Proof: Use the substitutionx = Q(u).

Lemma 2. If the quantile function QX satisfies the conditions
of Lemma 1, then

var(Xpq) =
∫ q

p

∫ q

p
Q′(s)Q′(t)h(s, t; p, q) ds dt,

0 ≤ p < q ≤ 1,

where

h(s, t; p, q) =
(

q − s ∨ t

q − p

)(
s ∧ t − p

q − p

)
.

Proof: First consider the case withp > 0, soQ(p) > −∞.
Since var(Xpq) = var(Xpq − Q(p)), without loss of generality,
assumeQ(p) = 0. Then
∫ q

p
Q(u) du =

∫ q

p

∫ u

p
Q′(s) ds du=

∫ q

p
(q − s)Q′(s) ds.

Similarly,
∫ q

p
Q(u)2 du

=
∫ q

p

{∫ u

p
Q′(s) ds

∫ u

p
Q′(t) dt

}
du

=
∫ q

p

∫ q

p
Q′(s)Q′(t)

{∫ q

p
1[ p,u](s)1[ p,u](t) du

}
ds dt

=
∫ q

p

∫ q

p
Q′(s)Q′(t)(q − s ∨ t) ds dt.

Using Lemma 1 with these two expressions,

var(Xpq) =
1

q − p

∫ q

p

∫ q

p
Q′(s)Q′(t)(q − s ∨ t) ds dt

−
[∫ q

p

(
q − s

q − p

)
Q′(s) ds

]

×
[∫ q

p

(
q − t

q − p

)
Q′(t) dt

]
,

which simplifies to the expression in the lemma.

For the general case, note that limp→0 E(Xk
pq) = E(Xk

0q),
k = 1, 2, whenever the latter variance exists.

Proof of the Theorem.For part (a), sufficiency follows directly
from Lemma 1 withk = 1. On the other hand, using Lemma 1
again, limq↓p E(Xpq) = Q(p), and necessity follows.

To prove part (b), note thath(s, t; p, q) ≥ 0 for alls, t and for
any 0≤ p < q ≤ 1. Thus the condition of the theorem implies
coherent variance domination. For the converse, first note that

1

q − p

∫ q

p

∫ q

p
h(s, t; p, q) ds dt=

q − p

12
.

By assumptionQ′
X andQ′

Y are both continuous. IfY coherently
dominatesX in variance,

Q′
Y(p)2 = lim

q↓p

12

q − p
var(Ypq)

≥ lim
q↓p

12

q − p
Var(Xpq) = Q′

X(p)2.

But both QX and QY are nondecreasing functions, soQ′
X(p)

andQ′
Y(p) are both nonnegative, proving the converse.

[Received January 2008. Revised April 2008.]
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