Delta Plots and Coherent Distribution Ordering
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differences between two distributions.

There is considerable intuitive information in a delta plot.

Social scientists often compare subclasses of populatiéiigure 1 shows three examples from data collected in our ex-
or manipulatons. For example, in comparing task-completiparimental psychology laboratory. The line labeled “Stroop” is
times across two levels of a manipulations, if one group hdata from a classic task in psychology, the Stroop Task (Stroop
faster overall mean response, it is natural to ask if the fast#885). In our case, participants were presented words in col-
10% of the first group has a faster mean than the fastest 108d fonts and had to report the color by pressing an appropri-
of the second group, and so on. Delta plots, a type of quantige key. The words, however, were color terms such as “RED”
guantile residual plot used by psychologists, shed light on thesel “GREEN.” The task is easy if the font color matches the
comparisons and motivate new notions of stochastic orderiteym; for example, if the word “RED” is presented in red. The
If all percentile classes have faster mean in one group tharask is quite difficult, however, if there is a mismatch; for exam-
the other, we say that there is coherent mean ordering and that if the word “RED” is presented in green. In this latter case,
one group stochastically dominates the other in mean. A relatlee meaning of the word interferes with the judgment of the
notion of coherent variance ordering can be defined similarfignt color. The former and latter conditions are caltehgru-
Violations of coherent orderings of means or variances are eiitandincongruentrespectively, and the time taken to make a
agnostic signatures of complex effects and suggest further jadgment is called the response time (RT). The resulting delta
enues of study. In this note, we derive necessary and sufficigiot is the line labeled “Stroop” (see note below). DeandY
conditions for stochastic dominance in mean and variance. Béote response times to the congruent and incongruent condi-
show that stochastic mean dominance is exactly equivalentiéms, respectively. There is a stochastic orderirng+s said to
the usual stochastic dominance and stochastic variance ddraistochastically smaller thahif Fx(t) > Fy(t) for all t. An
nance is equivalent to ordering of the first derivative of the quammediate consequence of stochastic ordering is that the quan-
tile functions. tile functions are also ordere@y (p) > Qx(p)for0 < p < 1.

Thus,Y stochastically dominateX if and only if the delta plot

KEY WORDS: Delta plot; Q-Q plot; Stochastitbminance.  is nonnegative.

Figure 1 also shows data from a second task, the Simon Task
Simon 1969). [Note: A group of 38 participants observed 504

Statisticians are familiar with quantile plots and Q-Q plo . R .
(e.g., Wilk and Gnanadesikan 1968). Psychologists have intéréqls in the Stroop task followed by 504 trials in the Simon task.

duced a variant called thielta plot(De Jong 1994) that brings ample quantiles were estimated for each participant in each

into sharp focus differences in populations on a quantile scaﬁ%'.qd't'on in each task and averaged across participants. A sep-

: . rate group of 37 participants observed 84 trials in the phone-
The purpose of this note is to show how the delta plot can %gmber repetition Simon task.] The task is similar; the partici-

- . . . . n
in insight into experimental nd how it rel . o .
ﬁzﬁg;g g?stocflgst?c ot:)d(z\:ri?]e ental data and how it re atesp{sé\)nt identifies the color of boxes, either red or green, by press-
. g ing a key on the left for red and on the right for green. These
To define the delta plot, for simplicity we assume complete ; > .
information on two distributionsX and Y, with respective Colored boxes are presented on either the left or right side of the
uantile function©x (p) andQy (p). The o' ulation dglta Iotdisplay. In the congruent condition, the side of display matches
iqs a graph ofQ (p)x pQ D) ngi'nst Qp (F;)) +0 (p)]/g the correct answer; for example, a red square presented on the
y(P) — Qx X Y . : i ; ;
In practice, the delta plot is estimated from data using samlqg' ;? dtehiflrlrtézng;useen;(r:]c()jng:go;atehirfe Irsezemnltzr'siq(?rtchl'ﬁgt\:fseu?t-
guantile functions. Another closely related plot is a plot of dif- delta pl ]E) h . f P d :
ferencey (p) — Qx(p) against probabilityp. One advantageIng € tj. b ots for the compﬁrlrs]or;. N lcobnglrl(JjePt an |r1conﬁlru-
of plotting the difference in quantiles against the mean ratheenrt cor;1 ltions are s OV\E)n with the ne labe eh SI.MO'E' I.nt '? h
than p is that the delta plot for two distributions in a Iocationc-:‘.”lse.’ t cre appears tobe no consstent stoc_: . astic or ernng o the
S g . . distributions since the delta plot is both positive and negative.
scale family is linear. This linearity property is also true for an . :
ordinary Q-Q plot, but the Q-Q plot is not as useful Eslating Assuming these features of the delta plots are real and not just
' random fluctuations, they suggest a few substantive directions

for exploration: Although the Simon and Stroop tasks are sim-
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1. ORDERING DISTRIBUTIONS

Recall that ranking distributions by their unconditional
means is equivalent to first-order stochastic dominance (FOSD)
under strong conditions, for example, in location parameter
families such as normal distributions with equal variances. A
delta plot that is everywhere positive shows that the distribu-
tions may be ranked by their means. However, the delta plot
suggests more. In comparing segments of the distributions such
as the fastest 10% of each, a positive delta plot would seem to
imply that FOSD implies dominance of the conditional means.
That is, the mean of the fastest 10% in one group is greater than
the mean of the fastest 10% in the other group, and so on. Simi-
larly, a positive slope to the delta plot suggests that the variance
of the plot for the fastest 10% would seem to imply that the
° conditional variance of the fastest 10% in one group is greater
than the other, etc. We make can make these observations more

Simon precise.
‘ ‘ ‘ : We define concepts afoherent mean orderinCMO) and
400 600 800 1000 coherent variance orderingCVO) as follows. In the notation
Average RT (ms) above, letX andY denote two absolutely continuous random
Figure 1. Delta plots for three conditions: Stroop interference, Simeariables with common support, CDFs and Fy, and quan-
interference, and Simon interference with phone-number repetitiontile functions Qx(p) = Fx'(p) and Qy(p) = Fy(p) for
0 < p < 1 Finally, forO< p < g < 1, let Xpq denote
the truncated random variable with distributi@d | Qx(p) <
automc_"mc ac_t|vat|on_of the response on the side of presentat_wrg Qx(Q)), that is, with cdfopq (x) = (Fx(X)— p)/(q—p)
Following this reaction, there may be a slower compensatifeg Qx (p) < x < Qx(q). The truncated variable,q are de-
tendency that relatively favors the opposite side (see also Hulp@sd analogously. We will term these families of distributions
etal. 2002). thequantile-restrictedlistributions ofX andY. Finally, we will

The final delta-plot line, labeled “Simon+Phone,” showgay that two distribution§x andFy have the CMO property if
the results of a modified Simon task (see previous note).€lither
this task, participants were asked to repeat over-and-over their
phone number during the trial. The resulting delta plots sug- E(Xpq) = E(Ypg) forall 0<p<qg=<1,
gest fairly complex dynamics that are concordant with a mié?
ture model. Consider the following speculation: For the major-
ity of responses, the repetition of the phone number proceeded
smoothly with no effect on Simon interference whatsoever. Harother words, if two distributions have the CMO property, then
a minority of responses, however, the phone number rep#ie ordering of the means for the unrestricted random variables
tion affected processing, perhaps through a misarticulationcbfracterizes the ordering of the means for all of their quantile-
the phone number. In this case, the response to the squarerestsicted distributions. If the CMO property holds angf'k >
slowed, and the compensatory response was not engaged.E(, then we will say that coherently dominateX in mean,
observed delta plot is concordant with such a mixture. orY =m X. Figures 2(a) and 2(a) show cases where CMO holds

The two-process suggestion from the Simon delta plot caffid is violated, respectively. In the following theorem, we show
about because the mean of the fast responses, say the fdkyakgoherent mean ordering is equivalent to ordinary first-order
20% in each distribution, is smaller for the congruent conditochastic dominance.
tion. The mean of the slowest responses, say the slowest 209" analogous property can be expressed for variance. We say
is smaller for the incongruent condition. In a sense to be md@at two distributions=x andFy havecoherent variance order-
more precise below, the position of the delta plot provides g (CVO) if either
comparison of mearat percentile levelsThe mixture sugges-
tion from the Simon+Phone delta plot came about because the
slopes reverse. The slope of the delta plot provides for a cogp-
parison of variancat percentile levelsThe fastest 20% is more
variable in the congruent condition than the incongruent; the var(Ypq) > var(Xpq) forall 0<p<qg<1l
slowest 20% is more variable for the incongruent than the con-
gruent. When conditional means or conditional variances tethe CVO property holds and var) > var(X), then we will
verse orderings across a distribution, it is surely a sign of cogay thaty coherently dominateX in variance, oty =, X.
plex dynamics that warrant further investigation as diagnosticFor instance, if the CVO property holds and RTs in a con-
phenomena. gruent condition are more variable than RTs in an incongruent

Effect (ms)

50
1

Simon + Phone

E(Ypgq) = E(Xpg) forall 0<p<g<l

var(Xpq) > var(Ypq) forall O0<p<qg<1,

2 Statistical Computing and Graphics



©
S ] E
o -
o< ]
9o
2 O&c
2™ £
a8 8o |
~ g°
@
E o
- - 0o
<
o — o
1 T T T T T 1 ' 1 T T 1
00 02 04 06 08 10 12 0.2 0.4 0.6 0.8
Score Mean of Quaniles
©
© S ] F
o< ]
© - Lo
<
S
2 O&c
2« - £
a8 8o |
@ IS
[
N E o
8o
<
o — o
1 T T T T T 1 ' 1 T T T T T 1
00 02 04 06 08 10 12 03 04 05 06 07 08 09
Score Mean of Quaniles
0 — ©
S 7 G
< A o< ]
9o
<
o - S
2 O&c
2 £
8 N §O. .
9_) o
Q
L=\
- - () 0, -
<
o — o
1 T T T T T 1 ' 1 T T 1
00 02 04 06 08 10 12 0.4 0.6 0.8 1.0
Score Mean of Quaniles

0.6

Difference in Quantiles

00 0.2

| |

/ T

0.4

-0.2

Density
00 05 1.0 15 20 25 3.0

-0.4
|

00 02 04 06 08 10 12 0.2 0.4 0.6 0.8 1.0
Score Mean of Quaniles

Figure 2. (a) and (b): Distributions for which coherent mean ordering holds and is violated, respectively. (c) and (d): Distributions for whicl
the coherent variances ordering holds and is violated, respectively. (e)—(h): Delta plots for (a)—(d), respectively.
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one, then there are no quantile intervals in which incongruentPerhaps the simplest definition of ranking by conditional
condition RTs are more variable than congruent-condition RTisean values would be to condition on fixed intervals, say],
Figure 2(c) and 2(d) show cases where the CVO property hotdther than fixed quantiles. However, this ranking is not equiv-
and is violated, respectively. Theorem 1 shows the relationshlpnt to FOSD. For example, suppose~ uniform[—1, 1] and
between the coherent ordering properties and the quantile fudchas pdfp(x) = 3/4 for =1 < x < 0, p(x) = x/2 for
tions of the two distributions. 0 < x < 1, andp(x) = O elsewhere. It is easy to see that
the distribution ofY is stochastically larger than that &f and
E(Y) > E(X). However, EY |0 <Y < 1) =1/2 < E(X |

2. CHARACTERIZING CMO AND CVO 0 < X < 1) = 3/4, so the conditional mean condition is vio-

The two properties, coherent mean ordering and coher@ﬁ?d'h . domi d be related
variance ordering, can be easily characterized in terms of thé-oherent variance dominance does not appear to be relate

guantile functions of the two distributions. We assume thiat ©0 any other C(_)nlve_nnonal notion of StEChaSt'C dorlnlg_angbe. _Un-
andY have continuous distributions with continuous probabili@er very special circumstances (such as normal distributions

density functions supported on possibly infinite intervals. The gh equal means), ranking by .unconc.iitional variance is equiv-
conditions imply thatQx and Qy are continuously differen- alent to second-order stochastic dominance (SOSD). [SOSD of

tiable on(0, 1) a nonnegative random variableover another nonnegative ran-
T dom variableX holds if and only if

Theorem 1. (a) A random variable Y coherently dominates X 'z z
in mean if and only if /0 (1—-Fx(x))dx > /o (1—Fy(y)dy
Qv(p) > Qx(p) forall 0<p<1, 1) for aI_I z> 0 (e.g., Ba_wa 1975).] _In contra_st, for distribut_k_)ns
obeying coherent variance ordering, ranking by unconditional
that is, if and only if Y is stochastically larger than X. variance is equivalent to coherent variance domination.

. . ) ) _Once again, the use of quantile (i.e., probability) infor-
(b) A random variable Y coherently dominates X in variancerfation appears to be crucial. For example, suppgse~

and only if uniform[—2, 2], soQv (p) = 2(2p—1) andQ{,(p) = 4 for 0 <
, , p < 1. Next, letX have pdff (x) = 3(x?+1)/8, -1 < x < 1,
Qv(p) = Qx(p) forall O0<p<1 @ and zero elsewhere. Becau$éx) > 3/8 on the support of

X, the quantile function satisfie®) (p) = 1/f(Q(p)) < 8/3

This theorem provides a relationship between delta plots &ad0 < p < 1, andY coherently dominateX in variance.
coherent orderings. Coherent mean ordering holds if and ohRlgwever, vafY | —1 < Y < 1) = 1/3, which is less than
if the delta plot is either entirely positive or entirely negativear(X | —1 < X < 1) = 2/5. Thus the conditional variance
Similarly, a consequence of (2) is that coherent variance ordsgndition on a fixed intervaH] b] does not necessarily hold for
ing holds if and only if the delta plot is monotonic. In fact, iCVO.
one plots quantile difference®x(p) — Qv (p) againstp di-
rectly, then coherent variance ordering clearly implies the plot is 4. DISCUSSION
monotonic by (2). The delta plot is a graph@%k — Qy against
m(p) = [Qx(p) + Qv(p)]/2. Sinced(Qy — Qx)/dm =  Consideration of coherent ordering and the associated delta
(Qy —QY)/(dm/dp) andm(p) is strictly increasingQy, — QY  plot has substantive, theoretical, and practical advantages. From
andd(Qv — Qx)/dmhave the same sign. a substantive viewpoint, violations of orderings imply complex

The equivalence between coherent mean ordering agfhtions such as the presence of multiple processes or mixtures.
stochastic dominance in part (a) of Theorem 1 is not surpratisfaction of orderings, in contrast, may be accounted for by
ing. Clearly limy; p E(Xpq) = Q(p), so CMO implies (1). Con- simpler relations. From a theoretical viewpoint, Theorem 1 pro-
versely, if strict inequality holds in (1) at sonpg, it is not hard vides a novel relationship between the first and second moments
to show that EXq) < E(Ypg) for sufficiently small intervals and quantile functions. From a practical viewpoint, delta plots
po € (p,q). This idea can be extended to prove the convergeovide a quick and convenient method of assessing orderings.
An alternate proof is given in the Appendix.

APPENDIX
3. RELATIONSHIP WITH STOCHASTIC DOMINANCE
For the proof of the theorem, we need two lemmas.
The notion of stochastic dominance is familiar in the eCPemma 1. Suppose X is a random variable with continuous

nomics and finance literature (e.g., Levy 1992) as well as i§gantile function @p). If Q(p) is also differentiable a.e. with
statistics literature (e.g., Abadie 2002). The distributionYof Q’(p) > 0for almost all pe (0, 1), then

stochastically dominates (i.e., is stochastically larger than) that 1 Q@)

of X if Fy(t) < Fx(t) for all t. Under the conditions of The- E(x';q) = xK £ (x) dx

orem 1, stochastic dominance is obviously equivalent to (1). a=PJam

Thus, Theorem 1 gives an intuitive equivalent condition for 1 q Q(u)kdu 0<op<g<i
stochastic dominance. T q-p o ’ =P<0=4
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whenever the expectation exists. For the general case, note that ﬂt;bE(X';q) = E(X'gq),
k = 1, 2, whenever the latter variance exists.

Proof: Use the substitution = Q(u). Proof of the Theorenfor part (a), sufficiency follows directly

Lemma 2. If the quantile function Q satisfies the conditionsfrom Lemma 1 withk = 1. On the other hf?md, using Lemma 1
of Lemma 1. then again, limy p E(Xpq) = Q(p), and necessity follows.
' To prove part (b), note that(s, t; p, q) > Oforalls, t and for

ara Ot dsd any 0< p < g < 1. Thus the condition of the theorem implies
var(Xpq) :/p /p QR MG t; p.a)dsdt coherent variance domination. For the converse, first note that
0<p<qgcsl, 1 a rq _
—/ / h(s, t; p, q) ds dt= %.
where d=PJp Jp
g—svt\/sAat—p By assumptiorQ), andQyY, are both continuous. N coherently
h(s,t; p,q) = — — . dominatesX in variance,
q-—-p q-—-p

Proof: First consider the case with > 0, soQ(p) > —oo. QQ(p)z — lim 12 var(Ypq)
Since va(Xpq) = var(Xpq— Q(p)), without loss of generality, alpg—p

assumeQ(p) = 0. Then

v

2
lim Var(Xpq) = Q (p)2.
i (Xpg) = Qx(p)

q q ru q
/p QU du =/p /p Q(s)ds du=/p @-9Q @ ds But both Qx and Qy are nonQecreasing functions, &8, (p)
andQ{, (p) are both nonnegative, proving the converse.

Similarly, ] ) )
[Received January 2008. Revised April 2008.]
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