
Although there are numerous claims of subliminal 
priming, the topic remains controversial. We propose a 
new model for assessing the subliminality of stimuli. We 
illustrate the model in the number priming paradigm of 
Dehaene et al. (1998). In this paradigm, participants clas-
sify target digits (e.g., “8”) as either greater-than or less-
than five. Preceding the target digit is a briefly presented 
and subsequently masked digit which serves as a prime. 
Prime–target pairs are considered congruent if both have 
the same relation to five (e.g., 2 and 3 are congruent be-
cause both are less than 5) and incongruent otherwise. 
The claim for subliminality has been made when response 
times are faster to congruent prime–target pairs than to 
incongruent prime–target pairs, yet primes are not detect-
able (e.g., Dehaene et al., 1998; Van Opstal, Reynvoet, & 
Verguts, 2005).

One of the most vexing problems in this line of research 
is establishing that primes are truly not detectable. Typi-
cally, researchers run a set of trials in which they simply 
ask participants to detect the presence of the prime (or to 
discriminate among primes). Performance is quite low and 
often statistically indistinguishable from chance. Although 
the statistical analysis is computationally straightforward, 
the logic of claiming that the primes are undetectable is 
problematic. Reingold and Merikle (1988) popularized 
the following argument: The appropriate null hypothesis in 
this application is that detection performance is at chance. 
Evidence for undetectability is a failure to reject this null. 
Unfortunately, failure to reject this null may come about 
from insufficient power to resolve low but above-chance 
performance. Given that most subliminal priming effects 
are relatively small (see Draine & Greenwald, 1998), it is 
plausible that they result from superliminal priming with 
weakly detectable stimuli.

Current claims about the subliminality of a prime 
roughly fall into one of two classes. In the first class, re-

searchers test whether a specific participant is able to per-
ceive a prime. In the second class, researchers test whether 
a group of participants, en masse, can perceive a prime. 
We address these claims in turn.

The simplest means of testing for subliminality for a 
specific participant is to test whether the 95% confidence 
interval around the observed performance score includes 
the chance baseline. Consider the case in which perfor-
mance is measured as accuracy in a two-choice task with 
a chance baseline of .5. Figure 1, top left panel, shows the 
probability of concluding subliminality for various above-
chance levels of performance. The results are discourag-
ing. For example, if the sample size is 50 trials (line A) and 
the participant has a true accuracy of .6, the probability of 
concluding the prime is subliminal is .65 (marked with a 
“ ”). Even at larger samples, this error rate remains high. 
For example, at 400 trials (third line from the left), true 
accuracy scores of .55 will be misdiagnosed as subliminal 
with a rate over 0.45 (marked with a “°”).

Alternatively, researchers have claimed subliminality by 
decreasing duration, in fine increments, until a threshold 
criterion was reached. For example, Dagenbach, Carr, and 
Wilhelmsen (1989) decreased duration in increments of 
5 msec until participants responded correctly on no more 
than 23 out of 40 trials. Figure 1, top center panel, shows 
why this approach is problematic. For Dagenbach et al.’s 
criterion, there is still a high probability of concluding sub-
liminality when true performance is substantially above 
chance. Another alternative is provided by Greenwald, 
Klinger, and Liu (1989), who selected participants whose 
observed performance was below chance (i.e., accuracy 
was less than .5). The approach, however, is still suscepti-
ble to the same critique. Figure 1, top right panel, shows the 
probability of accepting subliminality as a function of sam-
ple size. Once again, if true values are near .5, the method 
is susceptible to mistakenly concluding subliminality.
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The second class of claims about subliminality is made 
for a group of participants. Typically, the collection of indi-
viduals’ accuracy scores are submitted to a t test. The null 
hypothesis is that the true group average is at chance and a 
failure to reject this null is taken as evidence for subliminal-
ity of the prime for all participants. We highlight two influ-
ential articles: Dehaene et al.’s (1998) investigation of the 
neural correlates of subliminal priming, and Murphy and 
Zajonc’s (1993) demonstration of affective subliminal prim-
ing from emotive faces. Dehaene et al. asked 6 participants 
to discriminate number primes from blank fields (96 trials) 
and 7 participants to discriminate number primes from let-
ter strings (112 trials). For prime durations of 33 msec or 
less, they reported that mean accuracies in both tasks were 
not significantly different from chance. Murphy and Zajonc 
(1993) asked 32 participants to identify whether a prime 
face was happy or scowling on 12 trials. They too found that 
mean accuracy did not differ significantly from chance. We 
assessed the probability of mistakenly accepting sublimi-
nality with a t test through simulations. Each participant 

was assumed to have some degree of superliminal perfor-
mance. True accuracies were uniformly distributed between 
.5 and an upper bound. Figure 1, bottom, shows the prob-
ability of accepting the null as a function of the upper bound 
for the sample sizes in these experiments. Even for high 
values of this upper bound, there is a substantial probability 
of mistakenly concluding subliminality.

Figure 1 presents a troubling picture; it shows the dif-
ficulty of determining subliminality. Conventional null 
hypothesis tests are ill-suited here because they do not 
offer appropriate safeguards from mistakenly conclud-
ing subliminal performance. In this article, we provide a 
new model which provides these safeguards. Although the 
model has some shortcomings, it is a dramatic improve-
ment over current techniques.

MODEL DEVELOPMENT

To explicate the model, we consider accuracy in a two-
alternative forced-choice task with a chance baseline of 
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Figure 1. Probability of accepting chance performance as a function of true accuracy. Top left: 95% 
confidence intervals method. Lines A–F denote sample sizes 50, 100, 200, 400, 800, and 1,600, respectively. 
Top middle: Dagenbach, Carr, and Wilhelmsen’s (1989) criterion of 23 of 40 correct responses. Top right: 
Greenwald, Klinger, and Liu’s (1989) selection of below-chance performance. Lines A–F denote sample 
sizes 50, 100, 200, 400, 800, and 1,600, respectively. Bottom: t test method. Lines A–C represent the sample 
sizes from Murphy and Zajonc’s (1993) Experiment 1 and from  Dehaene et al.’s (1998) Task 1 and Task 2, 
respectively.
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.5. Extensions to other tasks and measures are possible but 
not covered. It is reasonable to assume that each individ-
ual’s performance reflects a true probability of a correct 
response (denoted by pi). The number of correct responses 
for the ith participant, denoted yi, is modeled convention-
ally as a binomial: 

 yi ~ binomial( pi, Ni), (1)

where Ni is the number of trials for ith participant. Some 
individuals may be truly at chance ( pi  .5), whereas oth-
ers may be able to detect the prime ( pi  .5).

Each participant is assumed to have a true latent ability, 
denoted by xi. True probabilities ( pi) are related to latent 
abilities: 

 p
x

x xi
i

i i

. , ,

( ), ,

5 0

0
 (2)

where  is the standard normal cumulative distribution 
function that relates z scores to probabilities. Figure 2 
shows an example of the model. The lower axis shows in-
dividuals’ true latent abilities. The upper axis shows corre-
sponding values of true probability pi. Negative values of 
xi correspond to subliminality; positive values correspond 
to superliminality.

Three hypothetical participants are shown as examples 
in Figure 2. They have latent abilities x1 .4, x2 .2, 
and x3 .3, respectively. Whereas the first 2 participants 
have negative latent abilities, their true probabilities are 
p1 p2 .5. The true probability for the 3rd participant is 
the probit transform of x3; that is, p3 (x3)  (.3)  
.62. Positive values of x1 are interpreted as probit scores 
of performance. Negative values are interpreted as the 
amount of increase in visibility needed for above-chance 
performance. Latent abilities depend on stimulus factors. 
For example, the same participant will show higher latent 

ability to primes presented for 33 msec than to those pre-
sented for 22 msec.

One novel feature of the model is that some proportion of 
participants have true probabilities at chance. For these par-
ticipants, the prime is undetectable on every trial. The model, 
therefore, makes a strong psychological commitment: There 
are stimuli that are so weak that they are imperceptible on all 
trials. To highlight this commitment, we name the model the 
mass at chance model (MAC). This commitment is not pres-
ent in classic psychometric theory (e.g., 3PL model; Nun-
nally & Bernstein, 1994). In these models, true probability 
at chance is an unreachable lower bound.

Theorists of near-liminal processing have debated the ex-
istence of thresholds. The debate is usually couched in terms 
of threshold models (Blackwell, 1953; Egan, 1975; Luce, 
1963) or signal-detection models (Green & Swets, 1966). 
In threshold models, perceptual information on each trial is 
dichotomous. In signal detection, perceptual information is, 
alternatively, graded. The MAC model assumes that each 
participant has a threshold. This threshold, however, dif-
fers from the threshold in information- processing models in 
that it does not describe perception on a trial-by-trial level. 
Instead, it describes performance across all trials. MAC 
is certainly compatible with traditional threshold models; 
detection on any trial is possible only when xi  0. MAC 
is also compatible with signal detection models: d  is non-
zero only when xi  0. Various trial-by-trial  information-
 processing models may be nested within the MAC model 
with sensitivity parameters subject to the population con-
straints imposed by the MAC hierarchy.

The MAC model is conveniently analyzed in the Bayes-
ian framework. In this framework, the analyst computes 
posterior distributions, or distributions of parameters 
reflecting the influence of data (Lee & Wagenmakers, 
2005). The main quantities of interest are the posterior 
distributions of participants’ latent abilities (xi | data). 
Whereas subliminality corresponds to negative values of 
xi, we compute the posterior probability Pr(xi  0 | data). 
We consider the ith participant at chance if this posterior 
probability is above a criterion. The choice of this crite-
rion may be set by convention to .95. The analyst’s deci-
sion rule is, therefore,

 Pr(xi  0 | data) .95 Conclude the participant
 is at chance. (3)

 Pr(xi  0 | data) .95 Conclude the participant
 is above chance. (4)

The MAC model mitigates the null sensitivity problem. In 
the MAC model, small sample sizes result in highly vari-
able posterior estimates of xi. Consequently, there tends to 
be more mass above xi  0. Lowering sample sizes makes 
it more difficult to claim subliminality, providing a safe-
guard against underpowered designs.

In Bayesian analysis, priors must be placed on para-
meters—in this case, on latent abilities xi. The choice of prior 
on xi induces a corresponding prior on pi, and these corre-
spondences are shown in Figure 3. The left panel shows the 
prior on pi when the prior on xi is flat, xi ~ normal(   0, 
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Figure 2. The mass at chance model. The top and bottom axes 
depict participants’ latent ability (xi) and true probability ( pi), 
respectively. The curve shows the population distribution of latent 
abilities. Sixty-two percent of the area under this curve is to the 
left of zero, indicating that 62% of the population is at chance. 
The three vertical lines denote latent abilities and corresponding 
probabilities for three hypothetical participants.
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2  ). Half of the mass is placed on pi  .5; half is placed 
on pi  1.0; and an infinitesimal amount is placed on all 
values between .5 and 1.0. The center and right panel shows 
the corresponding priors for other choices. The center panel 
shows the prior on pi when a standard normal prior is placed 
on xi; that is, xi ~ normal(   0, 2  1). The right panel 
shows the prior on pi when the prior on xi is normal(   0, 

2  .05). This prior reflects the reasonable belief that if 
half of the people cannot truly see the stimulus, then many 
of the remaining are going to cluster near chance.

Ideally, the choice of prior should not unduly affect the 
results in analysis with reasonable sample sizes. Unfortu-
nately, in this application, it does. The posterior quantity 
Pr(xi  0 | data) can vary greatly for these three priors. 
Consider a participant who responds correctly on 140 of 
288 trials. The posterior probability that this participant is 
at chance is 1, .95, and .64, for values of 2 , 1, and 
.05, respectively.

The dependence on the posterior on the three priors 
above motivates the need for an additional level of com-
plexity. We use a hierarchical prior on xi: 

 xi ~ normal( , 2). (5)

In this prior, parameters  and 2 are estimated rather than 
assumed. These parameters are population-level parameters 
that describe how latent ability is distributed. The curve in 
Figure 2 denotes a hypothetical distribution of latent abili-
ties. This prior is termed hierarchical because individuals’ 
latent abilities are nested within a population-level distribu-
tion. Priors are needed for  and 2, but the specification 
of these is less critical and easier to justify than the previ-
ous nonhierarchical priors. Specification of the priors and 
an overview of analysis is found in the Appendix. Detailed 
development is found in a supplement at www.missouri 
.edu/~pcl/papers. Source code for the analysis, in both the 
C and R languages, and an easy-to-use Windows executable 
may be found at www.missouri.edu/~pcl/code.

Equations 1–5 specify a nonlinear, hierarchical Bayes-
ian model. In previous applications, we have advocated 

this class of models for paradigms in which researchers 
believe that a nonlinear model is appropriate. The advan-
tage of this class of models is that it provides for accurate 
and powerful inference and does not require researchers 
to aggregate individuals for group-level tests. We have 
provided a number of nonlinear hierarchical models for 
psychological applications (Lu, Speckman, Sun, Rouder, 
& Morey, 2007; Rouder, Lu, Morey, Sun, & Speckman, 
in press; Rouder, Lu, Speckman, Sun, & Jiang, 2005; 
Rouder, Lu, Sun, et al., in press; Rouder, Sun, Speckman, 
Lu, & Dzhou, 2003) as well as a tutorial for psychologists 
(Rouder & Lu, 2005).

EXPERIMENT

We used the MAC model to assess the existence of sub-
liminal priming. Our design is a near replication of Van 
Opstal et al. (2005); the structure of a trial is shown in Fig-
ure 4. For the prime-identification task, participants indi-
cated the less-than-five status for primes. For the target-
identification task, participants did the same for targets.

Method
Participants. Twenty-seven University of Missouri, Columbia 

undergraduates served as participants.
Design. Prime–target congruence (congruent/incongruent) 

served as the main independent variable. Prime identification per-
formance and the priming effect in target identification served as the 
main dependent variables.

Procedure. The structure of each trial is shown in Figure 4. The 
primes were the digits 2, 3, 4, 6, 7, and 8; targets were the digits 
1, 4, 6, and 9. Primes, targets, and masks were presented in white 
against a black background. The black background had a luminance 
of .5 cd/m2. Displays with digits had luminances that varied be-
tween 2.8 cd/m2 and 4.5 cd/m2, depending on the number of pixels 
illuminated in the digit. Masks, which consisted of displays with 
5 “#” characters, had a luminance of 16.5 cd/m2. Digits subtended 
approximately .2º of arc horizontally and twice that vertically. All 
pairings of primes and targets occurred equally often in each task 
for each participant. Each participant first observed 576 trials in 
the target-identification task followed by 288 trials in the prime 
identification task.
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Results
The resulting accuracies for the prime identification 

task are shown in the top panel of Figure 5. The lower 
panel shows MAC model estimates of the posterior prob-
abilities that xi  0. Three of the 27 participants have 
posterior probabilities greater than the .95 criterion, and 
are considered as performing at chance (open circles). An 
additional two have posterior probabilities between .946 
and .95, and we provisionally consider them as well. The 
remaining 22 participants are shown with filled circles 
and are inappropriate for evaluating subliminal prim-
ing. Although many of these participants may be truly at 

chance, we do not have sufficient evidence from the data 
to conclude this.

One of the conventional analyses of these data is to 
test whether the population mean of proportion correct 
scores is different from the chance baseline of .5. A t test 
on the scores yi/Ni yields a rejection of the null hypothesis 
[t(26)  2.724, p  .05], although this result is leveraged 
by the two high-performing outliers. The advantage of the 
MAC model for this sample is that it allows for the selec-
tion of some of the 27 participants as not being able to 
detect the prime. These participants can then be used to 
test for the existence of subliminal priming.

The priming effect is shown in Table 1. There is a signif-
icant 8 msec effect across all 27 participants [t(26)  3.64, 
p  .05].1 Although the priming effect holds numerically 
for people selected as at chance (whether the criterion was 
.95 or .946), it is not significant. The MAC model reveals 
in this case that more participants are needed in order to 
assess the subliminal priming effect. Our experiment, how-
ever, is larger than most in the number priming literature.

EFFECTS OF REDUCING SAMPLE SIZE

One element of conventional significance tests that 
we see as especially problematic is the effect of reducing 
sample size. In these tests, reducing sample size increases 
the probability of claiming subliminality (from lack of 
power). This problem is not characteristic of the MAC 
model. The following simulation demonstrates that in-
creasing the number of observations per participant leads 
to more certainty in analysis. We simulated data from 40 
participants with half at chance and with half somewhat 
above chance (   0, 2  .18). The resulting MAC poste-
rior probabilities are shown in Figure 6. In one simulation, 
there were 100 observations per hypothetical participant 
(left panel); in the other, there were 1,000 observations per 
hypothetical participant (right panel). Of the 20 hypotheti-
cal participants truly at chance, 0 and 5 participants were 
identified at chance in the simulation with 100 and 1,000 
samples, respectively. The MAC model is conservative, 

Figure 4. The structure of a trial.
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but it is conservative in a direction that prevents conclud-
ing a participant is at chance for lack of evidence.

CAVEATS FOR APPLICATION

Although we have emphasized the advantages of the 
MAC model, there is a problem in application that de-
mands attention. It is reasonable to expect that if the rules 
of Equations 3 and 4 are used, then, in the long run, a 
minimum of 95% of the selected participants will truly 
be at chance. Unfortunately, this expectation holds only 
 asymptotically—that is, in the limit of either a large 
number of participants or a large number of trials per 
participant.

To assess the accuracy of decisions in reasonably sized 
experiments, we ran several simulation studies. Simula-
tions began with the specification of true values for and 

2. For each replicate, we first sampled true values of xi (in 
accordance with Equation 5) and then sampled observed 
accuracy scores (in accordance with Equation 1). For each 
replicate, we analyzed the data with the MAC model. Sim-
ulations were performed with 288 trials per participant, 
which represents a reasonable lower bound. The number of 
participants was either 10 per replicate or 30 per replicate. 
Table 2 shows the proportion of participants classified as 
at chance who were misclassified. Values greater than .05 
are troubling. They occur for experiments with small num-
bers of participants and small true values of 2. Therefore, 
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Figure 6. Effect of sample size. Analysis of simulated data in which 
half of 40 hypothetical participants are truly at chance. Plots show es-
timated posterior probabilities of chance performance as a function of 
true probabilities. Left and right plots are for sample sizes of 100 and 
1,000 observations per participant, respectively. Open and filled symbols 
denote probabilities above and below the .95 criterion, respectively. Cir-
cles denote estimates for which true probabilities are at chance; squares 
denote estimates for which true probabilities are above chance. Increas-
ing the sample size provides for more extreme posterior probabilities, 
which, in turn, provides for more precise classification of participants 
as at or above chance.

Table 1 
Effect of Prime Congruence

MAC Model No. of Mean Response Time (msec) p Value 
Criterion  Participants  Congruent  Incongruent  Difference  From t Test

None 27 508 516  8 .001
.945  5 526 539 13 .100
.950   3  496  512  16  .260
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we recommend the following two guidelines: (1) Samples 
should consist of at least 30 participants observing about 
300 trials. (2) Researchers should consider bolstering their 
claims with simulations. The simulation with 30 partici-
pants,   .6, and 2  .36, which has low error, roughly 
corresponds to values obtained in the experiment. We have 
provided an easy-to-use Windows executable that performs 
these simulations (www.missouri.edu/~pcl/code).

The accuracy of MAC decisions is improved when 2 
is accurately estimated. Unfortunately, it is difficult to es-
timate this parameter when many people have latent abili-
ties (xi) below zero. To provide for greater accuracy, we are 
currently developing MAC models for multiple stimulus 
durations. The longer durations will lead to above-chance, 
though not ceiling, levels of performance. These durations 
may be used for accurate estimation of 2, which may aid 
in the assessment of subliminality at shorter durations.

A second caveat for application concerns the possibil-
ity that the prime identification task underestimates latent 
prime identifiability. Target identification is an easy task, 
and participants retain motivation and attention. Prime 
identification, however, is much more difficult. Pratte 
(2007) found that participants’ motivation was substan-
tially lower in prime than in target identification. Further-
more, when easy-to-identify primes were intermixed with 
near-liminal ones, identification of near-liminal primes 
increased markedly. Pratte concluded that the easy-to-
 identify primes raise motivation in the task. The MAC 
model does not address these concerns. Users still bear 
the burden of equating characteristics across the tasks (cf. 
Reingold & Merikle, 1988).

DISCUSSION

We have shown that the problem of deciding whether a 
stimulus is subliminal is difficult. The MAC model pro-
vides a reasonable, though not perfect, solution. Draine 
and Greenwald (1998) and Greenwald, Klinger, and Schuh 
(1995) advocate a different alternative in which subliminal-
ity is not directly assessed. The method works by regress-
ing the priming effect in target identification onto prime 
detection. The y-intercept of the regression line serves as 
an estimate of the priming effect when prime detection is 
at chance. The advantage of this method is that researchers 

need not assume at-chance prime detection. Instead, the 
priming effect for at-chance prime detection is extrapo-
lated from a parametric fit. The method remains controver-
sial, and one of the critiques is that the analyst must assume 
a functional form between the priming effect and prime 
detectability (Dosher, 1998; Klauer, Draine, & Greenwald, 
1998; Merikle & Reingold, 1998). Our method, in contrast, 
relies on prime detection alone; there is no need to model 
the functional relationship between the two performance 
indices. Consequently, the MAC model may provide more 
direct evidence for subliminality.

In conclusion, the MAC model stems from the assump-
tion that some stimuli are so impoverished that they are 
never perceptible. This assumption, coupled with the hier-
archical structure, allows for the estimation of the probabil-
ity that a particular individual is at chance. Perhaps the most 
attractive feature of the model is that it is not susceptible 
to the null sensitivity problem. The MAC model provides 
an incentive to collect more rather than less data, because 
subliminality can only be claimed with sufficient evidence. 
We believe that the MAC model will lead to a more precise 
assessment of the subliminality of priming effects.
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In this appendix, we provide full specification and methods of analysis for the MAC model. Further details can be found in a 

supplement at www.missouri.edu/~pcl/papers.

Priors
It is necessary to place prior distributions on parameters  and 2. We use the following:

  ~ normal(0, 0
2), 

  ~ uniform(0, 1). 

The value of 0
2 must be chosen beforehand. We have performed a number of simulation experiments to understand the effects of 

this choice. We recommend 0
2  1 as this choice leads to conservative estimates of Pr[xi  0 | data]. The choice of a uniform on 

 is principled. The value of 1.0 is a reasonable upper limit. Consider the case that   0. The corresponding distribution on pi for 
those participants above chance is flat when   1. If   1, then the distribution of pi is bimodal, with modes at .5 and 1.0. We 
consider this unreasonable and exclude it a priori through the upper limit of 1.0 on . Other than this exclusion, there is no a priori 
commitment to any value of . These priors are proper, and the propriety of the priors guarantees the propriety of the posteriors (see 
Rouder & Lu, 2005).

Analysis
The target of analysis in Bayesian statistics is the derivation of the marginal posterior distribution for each parameter. We follow 

the common approach of deriving closed-form expressions for conditional posterior distributions and sampling these numerically 
with Markov chain Monte Carlo (MCMC) techniques (Gelfand & Smith, 1990). The derivation of conditional posterior distributions 
for this application and a discussion of sampling from them may be found in the supplement (www.missouri.edu/~pcl/papers).

We sampled chains of 50,000 iterations with the first 5,000 iterations serving as a burn-in period. The top panels of Figure A1 
show chains for select parameters. To keep the plots uncluttered, chains are displayed for the first 5,000 iterations after burn in. Plots 
for other iterations are highly similar. The bottom panels show the degree of autocorrelation in the chains for the select parameters. 
As can be seen, mixing is sufficient.
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NOTE

1. A t test for this comparison is equivalent to a Bayesian analysis 
with noninformative priors (Jeffreys, 1982; see Rouder & Lu, 2005 for 
a tutorial).
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Figure A1. Convergence in MCMC sampling. Top: Values on iterations 5,001 to 10,000 for selected parameters (from left to right: 
, 2, x25). Bottom: Autocorrelation of the chains for the selected parameters. The degree of autocorrelation is offset by the long length 

of the chains.
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