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Abstract

The shape of a response time distribution provides valuable clues about the underlying

mental processing. If a manipulation affects the shape of an RT distribution, then it is

reasonable to suspect that the manipulation has done more than simply speed or slow the

rate of processing. We develop a nonparametric bootstrap test of shape invariance.

Simulations reveal the test is sufficiently powered to detect small shape changes in

reasonably sized experiments while maintaining appropriate Type I error control. The test

is simple and can be applied broadly in cognitive psychology. An application to a number

priming experiment provides a demonstration of how shape changes may be detected.



Bootstrap Test of Distribution Shape 3

A Bootstrap Test of Shape Invariance Across Distributions

Response time (RT), the time taken to complete a task, is a common dependent

variable that has been used to draw inferences about the nature of mental processing (e.g.,

Luce, 1986). Although many researhcers draw conclusions from analysis of mean RT, it is

increasingly common to see more sophisticated analyses of entire RT distributions. These

more sophistcated analyses often provide additional constraint on cognitive and

perceptual theories. Selective examples include Ashby, Tien, and Balakrishnan (1993);

Dzhafarov (1992); Hockley (1984); Logan (1992); Ratcliff (1978); Ratcliff and Rouder

(1998, 2000); Rouder (2000); Rouder, Ratcliff, and McKoon (2000); Spieler, Faust, and

Balota, (1996); Theeuwes (1992, 1994); Townsend & Nozawa (1995); Van Zandt, Colonius,

& Proctor (2000); and Vickers (1980).

Although there are several methods of analyzing distributions, we advocate that

researchers consider how properties of location, scale, and shape change across conditions

or populations (Rouder, Sun, Speckman, Lu, & Zhou, 2003; Rouder, Lu, Speckman, Sun,

& Jiang, 2005). Figure 1 provides an example of these properties. The left panel shows

the case when only location differs between distributions; the center and right panels show

the same for scale and shape, respectively.

Location and scale are formally defined as follows: Let the density of a continuous

random variable exist everywhere and be expressed as f(t | θ1, . . . , θp), where θ1, . . . , θp

are parameters. Let z = (t− θ1)/θ2. We refer to the density as being in location-scale

form if there exists a density g such that

f(t | θ1, . . . , θp) =
1

θ2
g

(

t− θ1
θ2

| θ3, . . . , θp

)

. (1)

If Equation 1 holds, then θ1 is referred to as a location parameter and θ2 as a scale

parameter. We will say that θ3 through θp are shape parameters. Many random variables
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have densities that can be expressed in location-scale form. For the normal, for example,

θ1 = µ, θ2 = σ, and g(z) = (2π)−1e−z
2/2. The location parameter corresponds to the

mean, the scale parameter corresponds to the standard deviation, and there are no shape

parameters. For the exponential with f(x | τ) = τ−1e−x/τ , x > 0, there is no location

parameter (θ1 = 0), θ2 = τ , and g(z) = e−z. The scale parameter corresponds to τ , and

there are no shape or location parameters.

There is an asymmetric relationship between location, scale, and shape parameters

and the central moments of a distribution. Changes in location certainly imply changes in

mean but not in central moments of higher order than the mean. Changes in scale imply

changes in even central moments including the variance. Changes in scale, in general, may

imply changes in the mean too. For example, the exponential has a single parameter, the

rate, whose inverse is a scale parameter. Increasing the rate not only decreases the

variance, but decreases the mean as well. Changes in shape, in general, may imply

changes in all moments.

We have advocated the following processing interpretation of these properties.

Shape is the most important property as it may reflect the underlying mental architecture.

Shape changes may be associated with changes in architecture, such as changes in

mixtures, adding latent stages, or switching algorithms (e.g., from serial to parallel

processing). If shape does change across manipulations, then documenting, exploring, and

explaining these changes is surely a good route to better psychological theory. If shape is

invariant across manipulations, then this invariance licenses the analysis of scale.

Moreover, with shape invariance and stochastic dominance (see the center panel of

Figure 1), the scale serves as an index of processing speed. Scale is not interpretable

without shape invariance. For instance, it makes little sense to compare the scale of a

normal distribution to that of an exponential distribution. Finally, shift indexes peripheral

processes such as traducing the stimulus and executing motor commands (c.f.; Dhzafarov,
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1992; Hsu, 1999; Ratcliff, 1978).

The above interpretation of location, scale, and shape places priority on shape.

Therefore, it is important to develop methods of assessing shape invariance while allowing

location and scale to vary. There are two approaches to the problem: the first is to specify

a parametric form with an explicit shape parameter. Examples include the Weibull,

log-normal, and inverse Gaussian. We show in the next section that the parametric

approach is not robust to misspecification, and therefore, is not appropriate. The second

approach is nonparametric. The nonparametric approach would be straightforward if the

analyst knew the mean and variance of distributions to infinite precision. In this case, the

distributions could be shifted and scaled until they had a mean of 0.0 and a variance of

1.0. Then, any shape differences would be manifest as differences in the shifted-scaled

distributions and two-sample tests of distributional equality are seemingly appropriate.

Unfortunately, the analyst only knows sample means and variances; therefore, testing for

shape invariance is not equivalent to testing for distribution equality. In this paper, we

develop a nonparametric sampling test of shape invariance.

Lack of Robustness of a Parametric Test

Before developing the nonparametric test, we highlight the problems of a parametric

approach by exploring the robustness of a shape test that assumes a Weibull parametric

form. The density of a three-parameter Weibull distribution may be given as

f(t;ψ, θ, β) =
β

θ

(

t− ψ

θ

)β−1

exp

(

−

[

t− ψ

θ

]β
)

, t > ψ, θ, β > 0.

In this parameterization parameters ψ, θ, and β serve as the location, scale, and shape of

the distribution, respectively. To test the robustness of a Weibull parametric shape test,

we performed two simulated experiment with each consisting of 50 participants who each

observed 100 trials. In the first experiment, each participant’s data came from a Weibull

distribution with a location, scale, and shape parameter values of .262 s, .199 s, and 1.7,
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respectively. Because the test assumes Weibull parametric forms, the test is well-specified

for this experiment. In the second experiment, each participant’s data came from an

inverse-Gaussian distribution. The density of a three-parameter inverse-Gaussian

distribution may be given as

f(x|ψ, θ, β) =

√

θ

2π
(x− ψ)−3/2 exp

(

−((x− ψ)β − θ)2

2θ(x− ψ)

)

, x > ψ θ, β > 0.

In this parameterization parameters ψ, θ, and β serve as the location, scale, and shape of

the distribution, respectively. Each participant’s data had inverse-Gaussian location,

scale, and shape parameters of .2 s, 1.2s, and 5, respectively. Because the test assumes the

Weibull form, it is misspecified for these data. The contrast between the two experiments

allows for study of the effects of misspecification. The solid line and dotted line in the left

panel of Figure 2 show the densities of an inverse-Gaussian and a Weibull distribution,

respectively, with the parameter values given above. These distributions are highly similar

indicating that there is only a small degree of misspecification. Hence, we would hope that

the Weibull parametric shape test yields reasonable results, even when applied to

inverse-Gaussian data.

We fit two Weibull models. The general model consists of individualized location,

scale, and shape parameters. Across the 50 participants, therefore, there are 3 × 50 = 150

parameters. The restricted model specified that each participant had the same shape;

hence the restricted model had 50 shift parameters, 50 scale parameters, and a single

shape parameter (total of 101 parameters). Whereas “true” shapes did not vary across

participants, a well-calibrated test should yield a rate of Type I errors close to the nominal

value. We estimated the Weibull models with maximum likelihood and assessed the

validity of shape invariance with a likelihood ratio test (G2; Reed & Cressie, 1988; Wilks,

1938). Details of maximization are as follows. For the general model, the negative

log-likelihood was minimized for each individual separately. For each individual, there are
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three parameters and the three-parameter minimization was performed with the

Nedler-Mead Simplex algorithm (Nedler & Mead, 1967) in R with the optim() command.

The case is a bit more complicated for the restricted model. We used a nested

optimization design. In the inner loop, we minimized location and scale for each

individual separately for a fixed common shape with the simplex algorithm. Then, in the

outer loop, we found the best common shape that minimized negative log-likelihood with

the algorithm from Brent (1973) as implemented in R with the optimize() command.

Because each minimization call is done with respect to a small number of parameters,

minimization was quick and reliable.

The Weibull model is not regular, and therefore the asymptotic distribution of the

test statistic is not guaranteed to follow the chi-square distribution with 49

degrees-of-freedom (dfgeneral − dfrestricted = 150 − 101 = 49). To assess the effects of

irregularity, we simulated the first experiment (Weibull-generated data) 300 times. The

cumulative distribution function of the sampling distribution of G2 across these 300

replicates is shown as line “W” in the right panel of Figure 2. The dotted line shows the

theoretical chi-square distribution with 49 degrees-of-freedom. As can be seen, the

observed distribution is fairly close to the chi-square distribution even though regularity is

violated. The vertical line shows the criterial value for a nominal Type I error rate of .05.

The observed type I error rate for this nominal value is .083, which represents only a

modest inflation.

To assess how a seemingly small misspecification of parametric form affects the true

sampling distribution of G2, we performed 300 replications of the experiment with data

generated from the inverse-Gaussian. Line “IG” shows the cumulative distribution

function of the sampling distribution of G2. Most of the distribution (85% of the 300

simulation experiments) is above the nominal α = .05 criterial value indicating a massive

Type I error inflation. Even though the data were generated with shape invariance, the
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parametric Weibull test is useless as even small misspecification drive an unreasonably

high Type I error rate. It is this uselessness that motivates the need for a nonparametric

test.

Development of a Nonparametric Shape Test

We first develop a nonparametric shape test for the case for a single participant who

provides data in each of two conditions. Let x = x1, . . . , xJ and y = y1, . . . , yJ denote

vectors of J observations in the first and second conditions, respectively. Assume that the

data in each condition are independent and identically distributed; e.g., xj
iid
∼ X and

yj
iid
∼ Y , j = 1, . . . , J . The main question is whether distributions X and Y have the same

shape; i.e., do (X − µX)/σX and (Y − µY )/σY have the same distribution. The first stage

of the test is the construction of a statistic for shape change; the second stage is the

estimation of the sampling distribution of the statistic through resampling.

Step #1: Transform the data. If one knew the population means and standard

deviations for distributions X and Y , one could form the standardized samples, say

x∗j =
xj − µX
σX

, y∗j =
yj − µY
σY

, j = 1, . . . , J, (2)

and perform a nonparametric test for equality of two distributions such as the

Kolmogorov-Smirnov two-sample test (Conover, 1971) or the Cramer-von Mises

two-sample test (Anderson, 1962). Since the population means and standard deviations

are unknown, it is natural to use the sample means and standard deviations estimated

from the data, x̄, ȳ, σ̂x and σ̂y, and consider

x̃j =
xj − x̄

σ̂x
, ỹj =

yj − ȳ

σ̂y
, j = 1, . . . , J. (3)

Our strategy is to use the standardized data in (3) in place of the ideal standardized

samples in (2) in a two-sample test.
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Figure 3 provides examples of how shape differences in X and Y affect the

relationship between X̃ and Ỹ . The top-left plot shows two distributions that differ in

location and scale, but not in shape. For this example, five-hundred samples from each of

these distributions serve as data. These data were normalized with (3); the resulting

empirical cumulative distribution functions (ECDFs) are displayed in the top-center plot.

As can be seen, these ECDFs are quite similar. The bottom-left panel of Figure 3 shows

two distributions that differ in location, scale, and shape. Once again, 500 samples from

each served as data. The ECDFs of the normalized data are shown in the bottom-center

plot. These ECDFs are not as similar as the ECDFs in the top-center panel. When the

shapes are the same in data, the normalized distributions are similar; when the shapes are

different, the normalized distributions are dissimilar. Therefore, to test for shape

differences, we test for differences among the normalized data.

Step # 2: Quantify differences. One plausible statistic for describing the difference

between two sets of normalized samples is a sum-squared difference statistic,

d2 =
J
∑

j=1

(x̃(j) − ỹ(j))
2, (4)

where x̃(j) and ỹ(j) denote the jth order statistic of the respective normalized sample. If

we view x̃(j) and ỹ(j) as sample quantile estimates for the πjth quantile with

πj = j/(J + 1), then x̃(j) − ỹ(j) is the difference in sample quantiles for the two

(normalized) samples. The right panels plot these differences as a function of πj. If

distributions X and Y have the same shape, then these segments should be small

(top-right panel); as X and Y vary in shape, these segments increase (bottom-right

panel). The distance, d2, is the sum of the squares of these segments.

As an aside, the d2 statistic is related to the sample correlation between the order

statistics of x and y. In our case, it is easy to show that d2 = 2(J − 1)(1 − rxy), where rxy

is the sample correlation between order statistics. This development is similar to that
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underlying the Shapiro-Wilk (1965) one-sample goodness-of-fit test statistic for normality.

The Shapiro-Wilk test statistic, denoted r, is the correlation between the order statistics

of the sample and the expected value of the order statistics from a standard normal

distribution. The shape distance statistic is therefore related to a two-sample expansion of

the Shapiro-Wilk test.

The next stage is estimating a sampling distribution for d2. To our knowledge, this

distribution has not appeared in the literature. Thus we implement the test using the

bootstrap (Efron, 1979; see Efron & Tibshirani, 1993) to estimate critical values.

Step # 3: Bootstrapping A Sampling Distribution. The bootstrap method is based

on resampling from the original data set in some fashion to obtain a so-called “bootstrap”

sample. The test statistic is computed for the bootstrap sample. The procedure is

repeated many times, and the empirical distribution of the test statistics computed for the

bootstrap samples is used to estimate the true sampling distribution of the test statistic.

Let z be the vector of all the normalized data; i.e., z = (x̃, ỹ). Under the null

hypothesis, the elements of z are approximately independent and identically distributed.

(They would be exactly independent if z were computed with (2) instead of (3).) The

simple bootstrap is based on taking M independent bootstrap samples from z as follows.

To obtain the mth bootstrap sample, sample two vectors of data of length J from z with

replacement. Suppose these vectors are denoted x(m) and y(m), respectively. Regardless of

whether the null hypothesis is true or not, the bootstrap samples x(m) and y(m) come

from the same distribution, hence they have the same shape. Now equations (3) and (4)

are applied to each bootstrap sample to compute a bootstrap test statistic, which we will

denote d2
m. Note that d2

m is a test statistic computed from two samples from distributions

with the same shape, so the null hypothesis is true. The bootstrap idea is to use these

samples to estimate the distribution of d2 under the null.
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Step # 4: Estimating the p-value. The collection of d2
m, m = 1, . . . ,M , serves to

estimate the sampling distribution of d2 under shape invariance. If d2 is in the upper tail

of the sampling distribution, the null may be rejected. The bootstrap estimate of the

p-value is w/M , where w is the number of bootstrap samples for which d2
m > d2. Hence,

the decision rule for a desired Type I error rate of α may be constructed by rejecting the

null when p < α.

An Example

Table 1 provides an example of the bootstrap shape test. A single participant

provides 10 observations in each of two conditions. The first two rows, labeled x and y,

display the data. The rows labeled x̃ and ỹ are normalized in accordance with (3). The

distance statistic d2 is computed in accordance with (4); for these data, d2 = 1.66.

The row labeled x(m) and y(m) show a bootstrap step; these values were sampled

from the concatenation of x̃ and ỹ with replacement. Note how values from x̃ and ỹ

appear in both x(m) and y(m). The following rows show normalized bootstrap samples

x̃(m) and ỹ(m). The d2 statistic for these two vectors is d2
m = 1.49. We repeated the

process for another 999 bootstrap cycles samples and calculated a squared distance for

each. The squared distance from the original sample, d2 = 1.79, is less than 634 of the

squared distances from the 1000 bootstrap cycles; hence the p-value for the test is .634.

For any reasonable α, the null hypothesis of shape invariance cannot be rejected.

Extension of the Shape Test

It is quite straightforward to extend the test to multiple participants. Consider the

case in which each participant provides a set of response times in each condition. Let xij

and yij denote the jth response for the ith participant, i = 1, ..., I, in the control and

treatment conditions, respectively. We assume that each participant has his or her own
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characteristic shift, scale, and shape in each condition. The hypothesis under

consideration is that while this shift and scale may vary across conditions and people,

shape only varies across people and does not vary across conditions. The first step in the

bootstrap test for this hypothesis is to sum square distance over participants:

d2 =
∑

i

d2
i ,

where d2
i is the squared distance statistic for each participant. The same summing is

applied to each cycle of the bootstrap; i.e., d2
m =

∑

i d
2
i,m, where d2

i,m is the bootstrapped

squared distance for the ith person on the mth cycle.

A second extension covers the case in which there are different numbers of

observations in the control and treatment conditions. Two modifications are needed.

First, the number of samples comprising x(m) and y(m) are adjusted to reflect the

numbers of samples in each condition. Second, the distance statistic is modified to

account for unequal numbers of samples. Let J∗ be the smaller sample size and let

πj = j/(J∗ + 1), j = 1, . . . , J∗ be an estimate of the CDF of the jth ordered observation

for the smaller sample. Next, compute the sequence of πjth quantiles for x̃(m) and ỹ(m).

These sequences are ordered and the test proceeds as before.

Characteristics of the Bootstrap Shape Test

We ran a set of simulations to assess the level (Type I error-rate) and the power of

the bootstrap shape test. The reported simulations consisted of 40 participants each

observing 200 trials in each of two conditions. These values denote a moderately

large-scale experiment in cognitive and perceptual psychology. We repeated this

experiment 5000 times with M = 1000 resampling cycles.For analyzing data, we

recommend a much larger value of M , but the current value provides sufficient accuracy

to ascertain the approximate level and power of the tests.
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The tests were performed across three distributions that have been useful in

modeling RT: the Weibull, the ex-Gaussian, and the inverse-Gaussian or Wald. The

density of the ex-Gaussian may be given as

f(t;ψ, θ, β) = θ−1 exp(zβ−1) + .5β−2

β
Φ(z − β−1), θ, β > 0,

where z = t−ψ
θ and Φ is the cumulative distribution function of the standard normal.

Parameters ψ, θ and β serve as location, scale and shape parameters, respectively.

The first set of simulations was performed to assess the level or Type I error-rate of

the shape bootstrap test. In this case, true shape values were held constant across people

and conditions. These shape values were chosen such that the skewness of the

distributions was approximately 0.9, which is representative of observed RT distributions.

The Weibull with this skewness is the middle density in Figure 4. In our initial

simulations, shifts and scales were varied across each participant-by-item pairing, but this

variation had, as expected, no effect on the obtained level and power estimates.

The results of the simulations are shown in Table 2. We report the proportion of

times the null was rejected at α = (.01, .05, .10). The first three rows of Table 2 show the

case for shape invariance. For these distributions the bootstrap test is conservative for the

Weibull and inverse-Gaussian and well-calibrated for the ex-Gaussian.

We ran a second set of simulations to assess power. To model a large shape change,

we chose shape parameter values that correspond to a skewness of .7 and 1.1 in the two

conditions, respectively. Weibull densities with these skewness are drawn as the outer lines

in Figure 4. As shown in the Table, the power is quite high, even when the level is

conservative.

Although the bootstrap shape test is useful for the explored RT distributions, one

problematic issue is that the level of the test depends on the distribution of the data. We

ran an additional set of simulations with the normal, logistic, exponential and Pareto
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distributions. The pareto density is given as

f(t|ψ, β) = β
ψβ

tβ+1
, t ≥ ψ, β > 0, .

where β serves as a shape parameter. As can be seen, the level varies dramatically over

these forms. For thin tailed distributions, such as the normal and Weibull with a shape of

1.7, the bootstrap test is highly conservative. It is much better calibrated for exponential

tailed distributions (logistic, ex-Gaussian, inverse-Gaussian, exponential) and ridiculously

liberal for fat-tailed distributions (Pareto with a shape of 3.0). Fortunately, RT

distribution tails tend to be no fatter than an exponential as indicated by either flat or

rising hazard functions (Burbeck & Luce, 1982; Wolfe, 1998). Therefore, while the

bootstrap shape test is appropriate for RT distributions, it may not be appropriate for

other domains.

An Application

To demonstrate the utility of the bootstrap shape test in realistic contexts, we

tested empirical data from a priming experiment (Pratte & Rouder, submitted).

Participants observed single-digit numbers (2, 3, 4, 6, 7, 8) as targets and had to classify

each as being either greater-than or less-than 5. Prior to display of the target, single-digit

primes were displayed for 25 ms and masked. These primes, while barely visible, affected

the time it took to classify target. Targets preceded by congruent primes, that is, those

primes which elicit the same response as the target, were speeded by 13 ms relative to

targets preceded by incongruent primes. In Pratte and Rouder’s experiment, 43

participants observed 288 congruent and 288 incongruent trials. Pratte and Rouder

excluded responses if (a) they were incorrect (5%), (b) response time was outside a 200 ms

to 3 s range (.3%), or the prime and target were the same digit (so as to preclude

repetition priming effects). After exclusions there were an average of 270 incongruent

trials and 184 congruent trials per participant.
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Data in priming experiments are often displayed as delta plots (e.g., de Jong, Liang,

& Lauber, 1994; Ridderinkhof, Scheres, Ooserlaan, & Sergeant, 2005). Delta plots are

rotated quantile-quantile (QQ) plots; the diagonal of the QQ plot is rotated to the x-axis

(Zhang & Kornblum, 1997). To draw a delta plot, RT deciles are computed for each

participant in each condition. For each person and each decile, the difference in RT and

the average RT between the incongruent and congruent condition are calculated. The

difference score is plotted on the y-axis; the average score is plotted on the x-axis. The

left panel of Figure 5 is the delta plot for this experiment. The 43 gray lines in the center

plot show this relationship between difference and average RT. The result is that the

priming effect is greatest for the quickest responses and falls off as responses slow. The

points show averages at each decile. The y-axis value is the average difference across

condition; the x-axis value is the average of the average across conditions. The decline in

priming effect with slower responses is clear; moreover, this decline has been previously

observed in near-liminal number priming experiments (e.g., Greenwald, Abrams,

Naccache, & Dehaene, 2003). It is not clear whether the priming effect reverses for the

slowest responses. One prevailing interpretation of the decline is that the priming effect is

relatively short lived (e.g., Greenwald, Draine, & Abrams, 1996; Neely, 1977). We provide

an alternative explanation below after exploring the possibility of shape effects.

The result of the bootstrap shape test is a significant difference in shape across

priming conditions (p < .001). The right panel of Figure 5 provides a supplemental

graphical view of the shape test; the ECDF of all 43 participant’s p-values is plotted.

Under the shape invariance null, this ECDF should be that of a standard uniform and lie

on the diagonal. It does not, indicating values of pi are less than expected under shape

invariance.

The difference in shape across congruent and incongruent conditions is a primary

marker of processing. One fruitful avenue to pursue is a mixture explanation. We
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speculate that participants are consciously aware of the 25 ms primes for some trials and

not for others. Indeed, in a separate block, participants were able to accurately classify

the prime as greater-than or less-than 5 on 61% of the trials. Those trials that generate

awareness may have a priming effect; e.g., congruent primes that generate awareness result

in quicker responses than incongruent primes that generate awareness. Primes that do not

generate awareness do not generate a congruency effect. This mixture model would

produce shape differences. It is also reasonable to speculate that those primes generating

awareness happen on trials in which the participants are paying peak attention to the set

of events. Such peak attention will lead to relatively fast responses to the target. This

explanation accounts for both the decline in delta plots (congruent effects happen when

there is peak awareness and short response times) and a shape change.

Our explanation is admittedly post-hoc and speculative. The exercise demonstrates

how shape testing provides important leads for theoretical development. A shape

difference is an indicator to the researcher that there is an important marker of processing

that needs further exploration. In this case, we would propose a mixture, but clearly more

experimentation is needed. A priming researcher may try to localize the components of

the mixture though some manipulation, perhaps through manipulating stimulus-to-target

asynchronies or the relative proportion of incongruent to congruent primes.

Conclusion

Understanding the shape of RT distributions is critical for linking models of

information processing to data. In this paper, we show how parametric tests may not be

robust to misspecification and provide a nonparametric alternative. The developed test

makes use of modern resampling techniques and is relatively easy to implement. The test

proves powerful while maintaining adequate control of Type I error for RT distributions

with tails no fatter than an exponential.
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There are two large drawbacks to the current test: First, the calibration of the test

depends too greatly on the underlying distribution. It would be desirable to have a test

whose level was not so dramatically dependent on form of the tail. Second the test applies

only to paradigms in which all participants observe stimuli in two conditions. It is not yet

evident how to expand the test to factorial designs or continuously measured independent

variables. Nonetheless, many experiments in cognition and perception obey the

two-condition restriction; in these cases, the bootstrap shape test is appropriate for RT

distributions.
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Table 1

Sample data, transformed data, and bootstrapped samples provide an example of the shape

test.

x

0.073 0.58 0.41 0.419 1.107 0.515 0.074 0.233 0.205 0.079

y

1.272 0.903 0.524 0.827 0.827 1.308 0.835 0.598 1.087 0.634

x̃

-0.928 0.659 0.127 0.155 2.308 0.455 -0.925 -0.427 -0.515 -0.909

ỹ

1.448 0.08 -1.326 -0.202 -0.202 1.581 -0.172 -1.051 0.762 -0.918

x(m)

0.762 -1.051 -0.928 0.08 -0.202 0.155 0.455 -0.909 -0.202 0.127

y(m)

-0.925 -0.515 0.127 -0.515 0.127 -1.326 0.659 1.581 2.308 -0.202

x̃(m)

1.515 -1.428 -1.229 0.408 -0.05 0.53 1.017 -1.198 -0.05 0.484

ỹ(m)

-0.943 -0.577 -0.004 -0.577 -0.004 -1.301 0.47 1.293 1.942 -0.298
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Table 2

Observed proportion of rejections of the null hypothesis in simulations.

Shape ParameterValue Type I Error Power

Distribution Cond. 1 Cond. 2. α = .01 α = .05 α = .1 α = .01 α = .05 α = .1

RT Distributions

Weibull 1.66 1.66 .0012 .0098 .030 - - -

Ex-Gaussian 1.19 1.19 .008 .051 .109 - - -

inverse-Gaussian 11 11 .003 .022 .061 - - -

Weibull 1.48 1.9 - - - .957 .992 .998

Ex-Gaussian 1.0 1.43 - - - .440 .725 .836

Inverse-Gaussian 7.4 18.3 - - - .722 .904 .954

Other Distributions

Normal - - .0008 .0044 .015 - - -

Logistic - - .005 .040 .098 - - -

Exponential - - .015 .080 .159 - - -

Pareto 3 3 .72 .86 .92 - - -
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Figure Captions

Figure 1. The location-scale-shape taxonomy of differences between distributions. The

left, center, and right panels show distributions that differ in location, scale, and shape,

respectively.

Figure 2. Effects of misspecification on a Weibull parametric test Left: Weibull (dashed)

and inverse-Gaussian (solid) pdf’s are fairly similar. Right: Cumulative distribution

functions of the sampling distribution of log likelihood ratio statistic (G2) of Weibull test

of shape invariance. Lines labeled “W” and “IG” are for Weibull-generated and

inverse-Gaussian-generated data, respectively. The dashed line is the theoretical

chi-square distribution with 49 df . The vertical line indicates the nominal α = .05

criterion; the observed Type I error rates are .083 and .853 for the Weibull-generated and

inverse-Gaussian-generated data, respectively.

Figure 3. The shape test. Left: Densities underlying data for shape invariance (top row)

and shape change (bottom row). Center: Empirical cumulative distribution functions of

500 normalized samples for shape invariance (top row) and shape change (bottom row).

Right: Differences in normalized data for shape invariance (top row) and shape change

(bottom row).

Figure 4. Weibull distributions with skewnesses of .7, .9, and 1.1 (equated means and

variances)

Figure 5. Left: Light gray lines show individual delta plots; solid line is a group average.

The late dip below zero is not reliable at the group level. Right: ECDF of pi. Under the

null, the pi are distributed as a standard uniform (diagonal line). The departure is

substantial; shape invariance is rejected.
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