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If we view a visual scene that contains many objects, then momentarily close our eyes, some details
persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only
a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alterna-
tively, continuous resource models assume that all items in a visual scene can be stored with some
precision. Distinguishing between these competing models is challenging, however, as resource models
that allow for stochastically variable precision (across items and trials) can produce error distributions
that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of
variability in VWM performance arises from systematic variation in precision across the stimuli
themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and
variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the
orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we
found that the variable-precision resource model outperformed the discrete model. However, VWM
errors revealed a pronounced “oblique effect,” with larger errors for oblique than cardinal orientations.
After this source of variability was incorporated into both models, we found that the discrete model
provided a better account of VWM errors. Our results demonstrate that variable precision across the
stimulus space can lead to an unwarranted advantage for resource models that assume stochastically
variable precision. When these deterministic sources are adequately modeled, human working memory
performance reveals evidence of a discrete capacity limit.

Public Significance Statement
Visual working memory refers to the ability to remember visual information over periods of seconds.
This memory system is flexible and adaptive, but severely limited in terms of the amount of
information it can maintain. A major goal in psychology is to understand the nature of this limit: How
many items can be stored, and how precisely can each item be stored? In this work, we develop new
mathematical modeling techniques for characterizing the precision of memory for different visual
stimuli, and find that some stimuli are remembered with much higher accuracy than others. By
modeling and accounting for this large source of variability in memory performance, we obtain new
evidence to support the theory that visual information is lost from working memory in a discrete,
all-or-none manner, such that information about previously viewed stimuli can vanish entirely from
memory within moments of viewing.
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Working memory serves an essential role in cognition, provid-
ing an active mental workspace for maintaining task-relevant
information to support one’s immediate goals. This workspace,
although flexible and adaptive, is severely limited in its capacity
(Baddeley, 2003; Luck & Vogel, 1997; Miller, 1956). In recent
years, major advances have been made in understanding the cog-
nitive and neural bases of visual working memory (VWM) (Ester,
Sprague, & Serences, 2015; Harrison & Tong, 2009; Luck &
Vogel, 2013; Ma, Husain, & Bays, 2014; Pratte & Tong, 2014;
Serences, Ester, Vogel, & Awh, 2009; Sreenivasan, Curtis, &
D’Esposito, 2014). Recent attempts to characterize the precision of
VWM across varying memory loads has led to the development of
mathematical models that aim to capture the cognitive architecture
of visual working memory.

Prominent models of VWM broadly fall into two distinct classes:
discrete capacity models and continuous resource models. Discrete
capacity models posit that only a few items can be concurrently
maintained in VWM with high precision (Cowan, 2001; Cowan &
Rouder, 2009; Luck & Vogel, 1997; Rouder et al., 2008; Thiele,
Pratte, & Rouder, 2011; Zhang & Luck, 2008) such that increases in
set size beyond a person’s capacity limit will lead to more frequent
responses driven by pure guessing. In contrast, continuous resource
models assume that VWM has no discrete limit. Instead, performance
is determined by a limited central resource that is allocated to all items
in the display (Bays & Husain, 2008; Fougnie, Suchow, & Alvarez,
2012; van den Berg, Shin, Chou, George, & Ma, 2012; Wilken & Ma,
2004). As set size increases, there is less resource to go around,
resulting in diminished performance for each individual item but no
guessing behavior.

To investigate the relationship between accuracy and working
memory load, Zhang and Luck (2008) presented one, two, three, or
six colored squares to participants, and cued participants to report the
color of a probed item after a brief delay by clicking on a color wheel.
This method of continuous report revealed that participants were
highly accurate at small set sizes, but sometimes made gross errors at
large set sizes, such as reporting that a green stimulus was red. They
found that the distribution of errors in responses was well described
by a mixture model consisting of accurate responses centered at the
studied color, and pure-guessing responses following a uniform dis-
tribution for items that were presumably forgotten. These findings
were initially taken as strong evidence in favor of the discrete capacity
model, as standard resource models cannot readily account for high
proportions of guess-like responses.

Although the continuous resource model was thought to be
incompatible with the large memory errors observed in continuous
report data, van den Berg et al. (2012) developed a new version of
this model that accounted very well for the observed distribution of
VWM errors (see also Fougnie et al., 2012). This model assumes
that all items in a visual display are assigned some amount of
central resource, but that this amount varies randomly across items
and trials. Consequently, some items may happen to receive a lot
of resource, leading to high memory precision, whereas other
items may receive very little resource, which can lead to large
errors that resemble random guessing behavior. In recent studies,
this augmented version of the continuous resource model, referred
to as the variable precision (VP) model, has either been shown to
provide a statistically superior fit over the discrete-capacity mix-
ture model (Keshvari, van den Berg, & Ma, 2013; van den Berg,
Awh, & Ma, 2014; van den Berg et al., 2012) or a statistically

indistinguishable fit (van den Berg et al., 2014). Such findings
have led some researchers to question the long-standing view that
visual working memory has a discrete capacity limit (see Ma et al.,
2014), a concept that has been central to most major theories of
working memory (Baddeley, 2003; Cowan, 2001; Luck & Vogel,
1997, 2013; Miller, 1956).

In the present study, our goal was to provide a rigorous evalu-
ation and comparison of the discrete-capacity mixture model and
the variable-precision resource model. In particular, we wanted to
understand what components of each model might confer an
advantage in its ability to fit participants’ VWM errors. The
variable-precision resource model is founded on the central as-
sumption that working memory has no item limit, but its superior
ability to fit VWM errors could arise either from this lack of a
discrete item limit, or from other attributes of the model.

A key feature of the VP model is that variability arises from
random variation in precision across items and trials. Although the
average precision declines with set size in a predictable manner, each
item in a given display is presumed to receive a stochastically allotted
amount of resource, resulting in variable precision. At large set sizes,
the VP model yields predicted error distributions that resemble a high
proportion of random-guessing responses due to the fact that items are
frequently stored with low but nonzero precision. Note that the VP
model does not directly specify the precision with which an individual
item is stored, as it is fitted to the overall distribution of errors. The
model also does not specify the potential sources of this variability in
precision, although it is commonly described as reflecting variability
in how a continuous pool of memory resources is allocated to partic-
ular items within a trial (Fougnie et al., 2012; van den Berg et al.,
2012). However, this variable precision mechanism can account for
many sources of trial-to-trial variability in precision, including those
that arise from deterministic rather than stochastic processes. By
contrast, the standard discrete capacity model lacks any such mech-
anism to account for variable precision, as it assumes that the preci-
sion provided by each slot is the same for all items and trials.

We hypothesized that a major source of variability in VWM
performance arises from systematic variation in precision across
the stimulus space, effects that can be readily incorporated into
both discrete capacity and continuous resource models. We inves-
tigated working memory for orientation to test this hypothesis, as
considerable research has demonstrated systematic variability in
the precision of orientation processing. In particular, there is both
psychophysical and neural evidence that horizontal and vertical
orientations are more accurately encoded by the early visual sys-
tem than oblique orientations (Appelle, 1972; Furmanski & Engel,
2000; Girshick, Landy, & Simoncelli, 2011; Li, Peterson, & Free-
man, 2003; Shen, Tao, Zhang, Smith, & Chino, 2014). This
so-called “oblique effect” leads to superior perceptual discrimina-
tion of cardinal orientations over oblique orientations, which could
confer a similar advantage in VWM tasks.

In this study, participants were briefly presented with arrays
of one, two, three, or six oriented gratings, and after a delay
period, reported the orientation of a randomly cued grating from
memory by rotating a central probe (see Figure 1). Each par-
ticipant performed multiple test sessions to obtain sufficient
data for characterization of the precision of working memory
performance across the full range of orientation space. We
observed a prominent oblique effect at all set sizes, as evi-
denced by the fact that VWM responses were more tightly
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clustered around the true orientation when the tested grating
was near vertical or horizontal (Figures 2A–2C, black lines)
than when it was near 45° or 135° (Figures 2A–2C, red lines).
This deterministic source of variable precision can be antici-
pated equally well by discrete capacity or continuous resource
theories, for example, as resulting from early perceptual pro-
cesses. However, the VP model includes a mechanism that can
account for this variability (Figures 2D–2F), whereas the stan-
dard discrete capacity model has no such mechanism. Conse-
quently, this stimulus-driven variation may confer an undue
advantage to the variable-precision resource model.

We performed a simulation study to demonstrate this advan-
tage. In Figure 3A, data were generated from either the discrete
capacity model (blue) or the variable precision model (red),
each with various magnitudes of oblique effects included in the
model. Positive values on the y-axis indicate that the discrete
capacity model provides a better account of the data than the
variable precision model. Thus, blue points should have posi-
tive values, as they are generated from a discrete capacity
model. Alternatively, red points should have negative values, as
they are generated from the variable precision model. When
oblique effects are small, the majority of blue points indeed lie
above zero and red points below zero, indicating that the correct
data-generating model was identified. However, as the oblique
effect becomes more prominent in magnitude, statistical model
comparison systematically prefers the VP model over the dis-
crete capacity model, even when the data were generated from
a discrete capacity model. Consequently, even if the discrete
capacity model generated a set of working memory data, the
presence of an oblique effect will make the results appear as if
the VP model provides a superior account of the data.

We performed a series of analyses on experimental data to
test whether this deterministic source of variable precision,
across stimulus space, might confer an undue advantage for
the variable-precision resource model. First, we fitted both the
discrete-capacity model and the variable-precision model to the
overall distribution of VWM errors, independent of the studied
orientation. Statistical model comparison indicated that the VP
model outperformed the discrete capacity model, consistent
with other recent reports (van den Berg et al., 2014; van den
Berg et al., 2012). However, the VP model can account for
variability in precision due to the oblique effect (Figures 2D–
2F) whereas the discrete-capacity model cannot, so we next
augmented both models to directly include these effects. We
characterized the precision of VWM across orientation space
for each participant (Figure 4A), and incorporated this stimulus-
specific variability into both models by allowing the precision
of responses to depend on the specific orientation tested on each
trial. When this predictable source of variability was accounted
for, we found that the discrete capacity model outperformed the
variable precision model.

Finally, we implemented a hybrid version of the two models,
by constructing a discrete capacity model that allowed for
additional variability in precision beyond the oblique effect.
This model significantly outperformed both the discrete capac-
ity model and the variable-precision resource model. Taken
together, these findings imply that there are multiple sources of
precision variability in VWM, with stimulus-dependent vari-
ability comprising one major source. When these sources are
taken into account, we find that visual working memory is best
characterized as having a discrete item limit.

Method

Participants

Twelve observers (ages 20 to 35 years) participated in the
experiment, including two authors (Rosanne L. Rademaker and
Young Eun Park). All participants, except for the authors, were
paid for participation. All participants reported normal or
corrected-to-normal visual acuity, and provided informed consent
prior to participation. This study was approved by the institutional
review board at Vanderbilt University.

Stimuli

Visual stimuli were displayed on a gamma-corrected CRT monitor
with 1024 � 768 resolution and 75-Hz refresh rate. The stimuli were
generated using MATLAB and the Psychophysics toolbox (Brainard,
1997; Kleiner et al., 2007). The stimuli were presented against a
gray background of luminance 35.8 cd/m2 at a viewing distance
of 57 cm in an otherwise darkened room. Throughout the
experiment, observers were instructed to fixate centrally on a
black and white bull’s-eye (0.5° of visual angle in diameter).
Stimuli consisted of circular gratings (2° in diameter) with
spatial frequency of 2 cycles/degree and 50% Michelson con-
trast, with a wide Gaussian envelope (� � 2°). A sample array
consisted of one, two, three, or six gratings that appeared at
randomly determined locations on a virtual circle at an eccen-
tricity of 4° from the fixation point (see Figure 1), with the

Figure 1. Experimental design and stimuli. Example of a working mem-
ory trial with a set size of three items. Participants rotated the probe using
a keyboard interface to report the orientation of the cued grating from
memory.
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restriction that any two gratings were separated by a minimum
of 1°. Gratings were presented at random orientations, ranging
from 1° to 180° clockwise from vertical in 1° steps.

Procedure

Gratings were presented for 200 ms or 2,000 ms. Following
a memory retention interval of 3 s, cues appeared for 500 ms as
white outlines (0.04°) at the circumference of all studied grat-
ings. The to-be-reported item was indicated by a thicker (0.10°)
outline. A probe grating (2° in diameter) was presented cen-
trally at an initially random orientation (1°–180°), which could
be subsequently rotated by small (0.5°) or large (1°) steps by
using key presses. Observers confirmed their final answer by
pressing the space bar, initiating the fixation display for the
next trial.

Each 1-hr experimental session consisted of 320 trials. Trials
with different study durations (200 and 2,000 ms) were pre-
sented in eight alternating blocks of 40 trials each. In each
block, different set sizes (one, two, three, and six) were ran-
domly intermixed across trials. Across eight sessions, a total of
2,560 trials were collected for each participant, providing 640
observations at each of the four set sizes. In all analyses, our
main findings of the oblique effect and response biases were
present at both exposure durations, and exhibited the same
general pattern. Consequently, the data were collapsed across
exposure duration conditions.

Discrete Capacity Model

According to the discrete-capacity model, the observer’s re-
sponses (denoted y) are assumed to arise from a mixture of

Figure 2. Distributions of errors for working memory responses, with participant-averaged data and model
predictions for Set Sizes 2, 3, and 6 (left, middle, and right columns, respectively). (A–C) Density estimates of
participant-averaged data for each set size are plotted, separately for studied orientations within �10° of cardinal
orientations (black curves) and within �10° of oblique orientations (red curves). (D–F) Depiction of the variable
precision model, showing gamma distributions of precision values (inset) for Set Sizes 2, 3, and 6, and corresponding
von Mises distributions for the 5th, 50th, and 95th percentiles of the gamma distributions. (G–I) Predicted density
functions for the discrete-capacity model with oblique effects in precision incorporated, plotted separately for cardinal
(black) and oblique (red) orientations. See the online article for the color version of this figure.
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random-guess responses that follow a uniform distribution, and
in-memory responses that follow a von Mises (VM) distribution
centered at the studied orientation � with precision �n for the nth
set size. Guess responses at the nth set size occur with probability
gn and in-memory responses occur with probability 1 – gn.

P(y � Y) �
gn

2�
� (1 � gn) * VM(�, �n).

The guess rate gn varies as a function of the set size (N),
governed by a free parameter (K) that denotes the subject’s work-
ing memory capacity:

gn � 1 � K
N . (1)

According to the slots-plus-averaging model (Zhang & Luck, 2008),
memory precision will vary as a function of set size when the number of

Figure 3. Simulation results. (A) Data were simulated from a discrete capacity (DC) model (blue) or a variable
precision (VP) model (red) with oblique effects ranging from zero to one, encompassing typical values estimated from
the experimental data (individual’s estimates denoted by vertical lines along the abscissa). The y-axis shows the
difference in Bayesian information criterion (BIC) between fitted discrete capacity and variable precision models, such
that positive numbers indicate that the discrete capacity model provides a superior account of the data and negative
numbers support the VP model. When oblique effects are small, the correct models are recovered as being the
generating model. However, as the oblique effect grows, BIC begins to favor the variable precision model even when
the data were generated from a discrete capacity model. (B) The same data were fitted with the discrete capacity and
variable precision models that included oblique precision effects, with positive BIC values again supporting the
discrete capacity model. Incorporating the oblique effect in precision provides for accurate recovery of the true
generating model, even with large oblique effects. See the online article for the color version of this figure.

Figure 4. Stimulus-specific effects of orientation, showing (A) changes in VWM precision across orientation space and
(B) bias in mean responses across orientation space. Data were binned (10° bin widths) by studied orientation for each
participant, and a von Mises distribution was fitted to the data in each bin to obtain estimates of mean bias and precision for
each bin. (A) Estimated precision for each bin was averaged over participants at each set size, revealing a substantial oblique
effect. Lines show model fits to participant-averaged data, assuming a fixed oblique effect for all set sizes, allowing only
mean precision to vary across set size according to Equation 3. (B) The circular difference between the true center for each
bin and the estimated mean response in that bin reveals systematic response biases away from the cardinal axes. The line
shows the bias model fitted to these averaged data, in which the magnitude and shape of the bias effect is fixed across set
sizes according to Equation 4. See the online article for the color version of this figure.
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studied items is less than a subject’s capacity limit. This is based on the
assumption that an item may be stored in multiple independent slots,
leading to superior precision for that item due to the benefits of averaging.
The number of slots (S) devoted to the studied item is a latent mixture
(van den Berg et al., 2012):

Sk ��<K
N=, with probability 1-KmodN

N

<K
N=� 1, with probability KmodN

N ,

where <x= denotes the floor of x. This assignment of slots results
in two corresponding concentration parameters:

klow(N) � k1<
K
N=

khigh(N) � k1�1 � <K
N=�

,

where �1 denotes the precision for items maintained by a single
slot. If the number of studied items is equal to or exceeds capacity
(N � K), each stored item will have precision equal to �1.

Thus, the discrete capacity model has two free parameters for
each subject, capacity (K) and the associated precision for one slot
(�1). Parameters for all models were estimated separately for each
participant using maximum likelihood estimation procedures.

Variable Precision Model

In the variable precision model, responses again follow a von
Mises distribution, but with a precision that is assumed to vary
stochastically from item-to-item and trial-to-trial:

P(y � Y) � VM(�, ki),
ki ~ Gamma(	n, 
).

The precision (or amount of resource) assigned to any item in a
display of N items is assumed to arise from a gamma distribution
parameterized by its mean (�n), which varies as a function of set
size, and by a shape parameter 	 that remains fixed across set sizes.
Mean precision varies as a function of set size, following a power
function with two free parameters:

	n � �
N� , (2)

where 
 is the precision for a single item, and � determines the
rate with which this precision declines as a function of set size N.
The average estimates of 
 and � in our experiment were approx-
imately 25 and 1.3, respectively.

The variable precision model has three free parameters, the
precision for a single item (
), the rate at which this precision
declines as a function of set size (�), and the shape of the gamma
distribution that describes the variability in precision (	).

Hybrid Model

We constructed a hybrid model to determine whether visual
working memory might be better described by a model that has a
discrete item limit but still allows for variability in the precision of
VWM across items and trials beyond that caused by the oblique
effect. This model followed the architecture of the discrete capac-
ity model as presented above, but with the key difference that the
precision of each slot was allowed to vary from trial to trial

according to a gamma distribution. In this hybrid model, the mean
of the gamma distribution varies as a function of set size according
to the slots-plus-averaging framework, rather than by a power law
as in the variable precision model. Thus, the theoretical foundation
of the hybrid model is a discrete capacity model, as both guess rate
and changes in precision across set size follow the strict predic-
tions of the discrete model based on the individual’s estimated
capacity K. Thus, assigning multiple slots to represent a specific
item will lead to improved mean precision for that item, but mean
precision remains constant for all set sizes above a person’s
capacity.

The hybrid model has three free parameters for each participant:
capacity (K), average precision for a single slot (
), and the shape
parameter for the gamma distribution on precision (	).

Incorporating Orientation-Specific Oblique Effects

In all models under consideration, we examined two effects of
orientation: (a) the oblique effect whereby precision varies as a
function of the studied orientation, and (b) a bias in responses
away from the cardinal axes. To model the oblique effects on
precision, we used an exponentiated cosine function:

O(� 
 �, �) � e���*cos(2�) (3)

where � is the mean precision for all orientations �, and 
 is the
size of the oblique effect on precision. Exponentiation of the
cosine ensures that precision values are always above zero, and
produces a multiplicative effect between mean precision and ori-
entation. This oblique effect in mean precision is incorporated into
the discrete capacity model by allowing the precision for a single
slot (�1) to vary as a function of studied orientation according to
Equation 3. The oblique effect was incorporated within the VP
model and the hybrid model by allowing the mean precision
parameter (
) to vary according to Equation 3.

In addition to changes in precision across orientation space,
previous work has shown that observers sometimes exhibit con-
sistent biases toward or away from cardinal orientations in visual
perception tasks (Andrews, 1965; Girshick et al., 2011; van Ber-
gen, Ma, Pratte, & Jehee, 2015; Wei & Stocker, 2015). To ensure
that such biases did not influence our modeling of the oblique
effects in precision, we incorporated a bias term and performed
model comparison both with and without this bias parameter. We
characterized these bias effects by allowing the response distribu-
tions to be shifted away from (or toward) nearby cardinal orien-
tations, relative to the original studied orientation, following a
cosine function:

B(� 
 �) � �cos(2� � � ⁄ 2), (4)

where the free parameter � reflects the magnitude and direction of
the bias. This shift was added to the center of the von Mises
response distributions for all models with the bias term.

We found that these parameterizations of the oblique effect in
precision and the bias provided reasonable fits to participants’
VWM data (denoted by lines in Figure 4). In order to accurately
estimate the oblique effect, we first estimated how precision varies
with orientation (
) and the magnitude of bias (�) for each subject
at Set Size 1, and then used these parameter estimates when fitting
the full working memory models to Set Sizes 2, 3, and 6. This
approach capitalized on the highly reliable precision estimates
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observed at Set Size 1, and minimized the potential impact of
nonuniform guessing distributions which could distort estimates of
precision and bias across orientation space at large set sizes.

Model Estimation

All models were fit to the data from each participant by maxi-
mizing the likelihood function using standard gradient descent
optimization. This approach was made possible for the variable
precision and hybrid models by noting that the marginal distribu-
tion of a von Mises distribution with gamma distributed precision
follows a wrapped Student’s t distribution (Fougnie et al., 2012).
Although the density function for the wrapped t distribution in-
volves an infinite sum, appropriately approximating this sum
(Pewsey, Lewis, & Jones, 2007) provides a deterministic likeli-
hood such that a reliable maximum may be obtained.

To incorporate oblique effects into the models, the data from Set
Size 1 were first used to estimate the magnitude of oblique effects
in precision alone for each participant. At Set Size 1 the discrete
capacity model reduces to a von Mises distribution (assuming K �
1). Likewise, � drops out of the VP model at Set Size 1. In
addition, for typical estimates of 	 such as we observed here (M �
4.4), and the high precision values at Set Size 1 (see Figure 4A, in
blue), the wrapped t distribution approaches and is accurately
approximated by a von Mises distribution. Consequently, we mea-
sured the size of each participant’s oblique effect by fitting a von
Mises distribution to Set Size 1, with a mean precision and oblique
effect in precision following Equation 3. For models with oblique
effects in both precision and bias, we included an additional
parameter for the bias effect by modifying the mean of the von
Mises (Eq. 4, Figure 4B), conditioned on the tested orientation.
The estimated oblique effects for each subject were then used
when fitting the working memory models to all other set size data
(excluding Set Size 1).

Simulation Studies

A series of simulation studies were conducted to (a) investigate
how failing to model oblique effects can produce distorted con-
clusions, and (b) to examine whether explicitly incorporating these
effects within both models produces accurate conclusions. In Fig-
ure 3A, data were simulated from the discrete capacity model (blue
points) or the variable precision model (red points). Oblique ef-
fects on precision were incorporated within each simulation ac-
cording to Equation 3 (oblique effects in bias were excluded from
the simulations for simplicity), with effect magnitudes ranging
from no oblique effects (
 � 0) to large effects (
 � 1). The size
of these oblique effects covered the span of typical effects that
were estimated from the experimental data (the estimated magni-
tudes of oblique effects for individual subjects are denoted by
black vertical bars along the abscissa). Parameters for each simu-
lation were the parameters estimated from fitting each model to the
data aggregated over participants. Simulations were modeled after
our experimental design for each participant, with each including
640 trials from Set Sizes 1, 2, 3, and 6.

For each simulation, the standard discrete capacity and variable
precision models without oblique effects were fitted to the simu-
lated data from Set Sizes 2, 3, and 6. The relative ability for each
model to account for the data was measured with the Bayesian

information criterion (BIC) statistic (Schwarz, 1978); positive
values in Figure 3A indicate that the discrete capacity model was
superior, negative values indicate that the variable precision model
was superior. When oblique effects are small, the true data-
generating models are accurately identified (blue points are above
zero, red points are below zero). However, as oblique effects grow
in size (x-axis), the BIC statistics begin to favor the variable
precision model, even when the discrete capacity model generated
the data (indicated by the blue points below zero).

In Figure 3B the same data were fitted with discrete capacity
and variable precision models that explicitly accounted for
oblique effects in precision. The procedure for doing so was as
described above, in which oblique effects were estimated at Set
Size 1, and incorporated into the models for fitting data from
Set Sizes 2, 3, and 6. With oblique effects properly accounted
for in both models, model comparison statistics now identify
the correct model, regardless of oblique effect magnitude. The
size of the VP win in BIC does appear to get smaller at very
large oblique effects. We suspect this reflects the fact that when
oblique effects are very large, responses to oblique orientations
at high set sizes will be from such low precision that they will
resemble guessing, whereas responses to cardinals will be
somewhat accurate. This pattern may give the appearance of a
mixture of guessing and in-memory responses, providing some
evidence for a discrete capacity limit. Critically, however, even
at very large oblique effects the models are accurately recov-
ered in the majority of simulations, such that even if the
presence of large oblique effects in the data make them appear
to exhibit near-guessing on some trials, the discrete capacity
and variable precision models with oblique effects can still be
accurately identified as having generated the data.

Results

Behavioral Performance

The accuracy of participants’ working memory reports revealed
a prominent oblique effect across all set sizes in this study. The
precision of VWM was higher for cardinal than oblique orienta-
tions, as can be seen in the scatterplots shown in Figure 5, based
on the tighter clustering of reported responses around orientations
0° (vertical) and 90° (horizontal). To examine how performance
varied as a function of stimulus orientation, we binned the data
according to the orientation tested on each trial (10° bin widths)
and calculated the precision and mean bias of VWM responses for
each bin. The results of this analysis revealed strong oblique
effects in terms of VWM precision across all set sizes (Figure 4A),
as well as a modest effect of response bias away from cardinal
orientations (Figure 4B).

Comparison of Discrete-Capacity and Variable-
Precision Resource Models

We performed a statistical model comparison to determine
how well each model could account for participants’ patterns of
VWM errors across changes in set size, and critically, across
changes in orientation. Models were compared using the Bayes-
ian information criterion (BIC) statistic (Schwarz, 1978), which
reflects the log likelihood of the observed data given the model
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and its estimated parameters, plus a penalty term to account for
model complexity (a function of the number of parameters).
Thus, lower BIC values indicate better model performance. The
difference in BIC scores between two models provides a metric
of the better model, with a difference of zero indicating equiv-
alent performance and differences greater than 10.0 typically
taken as strong evidence in favor of the lower scoring model.
We present BIC results in two ways. First, we aggregated the
results across participants by summing likelihoods and comput-
ing a total BIC score for each model. These aggregated BIC
scores are shown in Table 1. Second, we calculated BIC values
separately for each participant, and determined which of the
nine tested models provided the best fit for each participant.
The numbers of participants for which each model provided the
best fit are shown in parentheses in Table 1. Similar results
were obtained using other model comparison statistics such as
Akaike information criterion (AIC; Akaike, 1974).

Models Without Oblique Effects

We first applied each model to the overall distribution of VWM
errors across changes in set size, without consideration of the
specific stimulus tested on each trial, following the approach of

Figure 5. Scatterplots showing reported orientations plotted as a function of the studied orientation for each set
size, collapsed across participants. Responses tended to fall along the identity line. However, the bowtie shape
of the deviations from the identity line indicates a substantial oblique effect. See the online article for the color
version of this figure.

Table 1
BIC Scores

Model
Discrete
capacity

Variable
precision

BIC
difference Hybrid

Original model 1181 (0) 813 (0) 368 733 (2)
Model with oblique

precision effect 510 (1) 616 (0) �106 150 (3)
Model with precision and

bias effects 366 (2) 571 (0) �205 0 (4)

Note. BIC � Bayesian information criterion.
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other recent studies that have compared the discrete capacity and
variable precision models (van den Berg et al., 2012, 2014). Table
1 provides BIC values for all models tested in this study, reported
as difference scores relative the to best fitting model (hybrid model
with oblique precision effect plus bias, as is described below). The
top row of Table 1 indicates the performance of the original
versions of the discrete capacity and variable precision models, as
well as the difference in performance between the two models. As
can be seen, the results of this analysis replicate previous reports:
The variable precision model provided a better account of the data
than the discrete capacity model (�BIC � 368). Likewise, when
BIC values for these models are computed and compared for each
participant, the VP model provided a better fit than the discrete
capacity model for 8 out of 12 participants.

Models With Oblique Effects

For this analysis, we determined how well each model could
account for participants’ VWM errors, taking into consideration
not only set size but also the specific orientation tested on each
trial. To do so, we incorporated oblique effects into each model
prior to performing statistical model comparison. Accounting for
these oblique effects led to marked improvements in fit for both
models. BIC scores were considerably lower for the discrete ca-
pacity model with oblique effects in precision, in comparison to
the original version of this model (�BIC � 671). The variable
precision model with oblique effects in precision also performed
better than the original version of this model (�BIC � 197),
indicating that there was additional variance to be absorbed by
explicit modeling of these stimulus-specific variations in precision.
However, as we anticipated, specifying this deterministic source of
variable precision a priori proved to be less beneficial for the VP
model than for the discrete capacity model. This is because the
original VP model allows for latent variability in precision, and
therefore it already has the ability to account for some of the
variance arising from predictable sources such as the oblique effect
(Figures 2D–2F). When this stimulus-specific source of precision
variability is explicitly specified in both models, our results indi-
cate that the discrete capacity model now outperforms the VP
model (�BIC � �106). We inspected how well these models
fitted the data of individual participants, and found that the discrete
capacity model with oblique effects provides a better account than
the VP model with oblique effects for the majority of participants
(7 out of 12). The predictions of this discrete capacity model are
shown in Figures 2G–2I separately for cardinal (black lines) and
oblique orientations (red lines), and these predictions align well
with the observed data (Figures 2A–2C).

In addition to oblique effects in precision, we considered models
that included orientation-specific effects in bias, as some partici-
pants showed small but consistent deviations in their responses
away from the true orientation, typically with shifts away from
cardinal orientations (Figure 4B). Similar effects of bias have been
reported in studies of visual perception (Andrews, 1965; Girshick
et al., 2011; Wei & Stocker, 2015). For these analyses, the mean
of the von Mises distribution was allowed to shift away from the
true orientation, by incorporating a mean bias component across
orientation space. The inclusion of this bias effect, in addition to
the oblique effect on precision, led to a further improvement in the
fits for both the discrete capacity model (�BIC � 144) and

variable precision model (�BIC � 45). With both of these sources
of stimulus-specific variability now incorporated into both models,
model comparison indicated that the discrete capacity model with
precision plus bias effects provides a much better account of
VWM responses than does the variable precision model with these
effects (�BIC � �205). Moreover, the discrete capacity model
now provides a superior fit for 8 of the 12 participants, in contrast
to the advantage observed for the standard version of the VP model
over the standard discrete capacity model.

Hybrid Model

The above results support the presence of an item limit for
working memory: When stimulus-specific variation in VWM pre-
cision is taken into account, the discrete capacity model provides
a better account of VWM responses than the variable-precision
resource model. However, it remains an open question as to
whether additional sources of variable precision might exist for a
discrete model with item limit, over and above the stimulus-
specific variation in precision that we account for by modeling the
oblique effect.

To address this question, we constructed a hybrid model that
included both a discrete capacity limit as well as variable preci-
sion. Specifically, the hybrid model followed the core architecture
of the discrete capacity model, while allowing the precision of
each slot to vary from trial-to-trial according to a gamma distri-
bution. The mean of this gamma distribution varied as a function
of set size, according to the slots-plus-averaging framework, and
set sizes exceeding capacity were modeled by predicted changes in
guess rate. If sources of variability other than the oblique effect are
present, then this hybrid model should outperform the discrete
capacity model with oblique effects included.

We found that the hybrid model, with discrete capacity limit and
latent variable precision, outperformed both the standard discrete
capacity model (�BIC � 448) and the standard variable precision
model (�BIC � 80). When the oblique effects of precision and
bias were incorporated within all models, the hybrid model showed
a clear advantage over both the discrete capacity model (�BIC �
366) and the variable precision model (�BIC � 571) with these
effects included.

When we consider all nine models and their ability to account
for the performance of individual participants (parentheses in
Table 1 indicate the number of participants for which each model
provided the overall best fit), several notable patterns emerge.
First, the best-fitting model for all of the 12 participants had as part
of its central architecture a discrete capacity limit (either the
discrete capacity or hybrid models). Second, the majority of best-
fitting models included the oblique effect on precision, or both an
oblique effect on precision and an orientation bias effect (10 out of
12 participants). Finally, some form of the hybrid model provided
the best account for 9 out of 12 participants. Taken together, the
conclusions drawn from these results are that (a) VWM is best
characterized by a discrete capacity limit, (b) a major source of
variable precision arises from stimulus-specific differences in
VWM precision such as the oblique effect, and (c) there are
additional sources of variable precision that are not accounted for
by our model of the oblique effect.
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Discussion

Discrete capacity and continuous resource models have pro-
vided dichotomous accounts of whether there is any limit to the
number of items that can be actively maintained in working
memory. Despite such divergent starting assumptions, these mod-
els yield very similar predicted patterns of performance on VWM
tasks, presenting a challenge for discerning their respective qual-
ities.

Here, we found that the variable precision model does outper-
form the discrete slots-plus-averaging model, when applied to the
distribution of VWM errors independent of the stimulus tested.
However, the superior performance of the variable precision model
did not arise from its central assumption that VWM has no item
limit. Instead, the variable precision model contains a mechanism
that can account for multiple sources of variability, regardless of
whether they arise from stochastic or deterministic sources. Our
behavioral results revealed that working memory performance was
consistently more precise for cardinal orientations than for oblique
orientations, indicating that stimulus-specific factors can strongly
modulate VWM precision. Once this source of systematic vari-
ability was incorporated into both models, we found that the
discrete capacity model provided a better account of the patterns of
VWM errors, and outperformed the variable-precision resource
model. These findings indicate the importance of considering
deterministic sources of variability when modeling VWM perfor-
mance, otherwise resource models with stochastically variable
precision may benefit from an unwarranted advantage.

Our implementation of a hybrid version of the two models
provides further evidence to support a discrete capacity limit.
Recent work has suggested that such a hybrid model with discrete
item limit may perform as well as or better than a variable
precision model with no item limit (Donkin, Kary, Tahir, &
Taylor, 2016; Nosofsky & Donkin, 2016; van den Berg et al.,
2014). Here, when oblique effects were taken into account in all
models, the hybrid model clearly outperformed both the discrete
capacity model and the variable-precision resource model (see
Table 1). These results suggest the presence of other sources of
variable precision in our study, in addition to those arising from the
oblique effect. Critically, however, our hybrid model with a dis-
crete item limit outperformed the variable precision models that
have no discrete upper limit. Our results therefore fail to support
the notion that all items in a visual display can be maintained with
some degree of precision. Instead, we find that gross errors often
occur at large set sizes that exceed presumed capacity, with error
distributions better described by an increasing predominance of
random guessing behavior. These findings provide compelling
new evidence in favor of discrete capacity models of visual work-
ing memory.

We focused here on visual working memory for orientation, as
variation in precision across orientation space has been extensively
studied and is well understood (Appelle, 1972; Furmanski &
Engel, 2000; Girshick et al., 2011; van Bergen et al., 2015). The
prevalence and consistency of the oblique effect across people
allowed us to incorporate this effect within complex models of
working memory in a principled manner, allowing for a rigorous
comparison of the discrete capacity and variable precision models.
However, there are almost certainly other sources of item-level and
trial-to-trial variability (Rademaker, Tredway, & Tong, 2012). For

our orientation experiment, the superiority of the hybrid model,
with oblique effects included, suggests that there are other sources
of trial-to-trial variability beyond just the oblique effect. There
could be other stimulus-dependent effects arising from interactions
among stimuli, such as ensemble coding effects (Brady & Alvarez,
2015a, 2015b; Johnson, Spencer, Luck, & Schoner, 2009), percep-
tual grouping effects (Woodman, Vecera, & Luck, 2003; Xu &
Chun, 2007) and effects of visual crowding (Tamber-Rosenau,
Fintzi, & Marois, 2015). For example, if some elements in a
particular visual display can be perceptually grouped or “chunked”
as a single unit for storage, this could alter the effective number of
items that can be maintained in working memory, which in turn
would lead to variability in VWM performance across displays
containing the same physical number of items. There is also
evidence of item-specific variability in VWM performance for
other stimulus materials such as color (Bae, Olkkonen, Allred,
Wilson, & Flombaum, 2014; Brady & Alvarez, 2015a; Morey,
2011), which could arise from low-level differences in perceptual
sensitivity across color space, as well as from the categorical
nature of color processing and naming (Bae, Olkkonen, Allred, &
Flombaum, 2015; Hardman, Vergauwe, & Ricker, 2017). Finally,
the allocation of attention across a visual display could lead to
additional sources of variability. For example, participants might
be predisposed to attend to a particular item in a multielement
display if it appears far from the other items, leading to uneven
distribution of attentional resources within a trial. Likewise, tem-
poral fluctuations of attentional vigilance could lead to variable
performance across trials (Adam, Mance, Fukuda, & Vogel, 2015),
even for displays containing identical visual items.

The goal in statistical model comparison is to reward models for
fitting the data well and to penalize models for their complexity, as
more complex models will always provide a better fit than less
complex models. We performed model comparison using the BIC
statistic which, like AIC (Akaike, 1974), penalizes models for their
complexity based on the number of free parameters in the model.
Whereas the discrete capacity model has two free parameters
(capacity and precision), the variable precision model has three
free parameters (mean precision, variability in precision, rate of set
size decline), and this additional complexity must be taken into
account when comparing the models. Both AIC and BIC are
theoretically well motivated, and simply counting parameters pro-
vides a convenient heuristic to quantify model complexity. In some
cases, however, this coarse measure may not capture the true
difference in flexibility across models. For example, when data
were simulated from a discrete capacity model without oblique
effects, the fitted discrete capacity model produced BIC scores that
were superior by about 35 points. However, when the data were
generated from the variable precision model, the fitted variable
precision model produced BIC scores that were superior by about
95 points (see Figure 3). This asymmetry was equivalent if AIC
was used, and indicates a bias in model selection in favor of the
variable precision model. Presumably, the VP model has greater
flexibility and complexity than the discrete capacity model, and the
BIC statistic does not sufficiently penalize the VP model for this
added flexibility. The particular choice of model comparison sta-
tistic used here is not so critical, as we demonstrate that incorpo-
rating oblique effects leads to a complete reversal in the conclu-
sion. However, for more critical applications such as when the
discrete capacity and variable precision models are simply com-
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pared in their ability to account for a data set, our simulations
suggest that a more careful approach for capturing model com-
plexity is warranted (e.g., Wagenmakers, Ratcliff, Gomez, & Iver-
son, 2004).

Constructing and comparing mathematical models provides for
a powerful way to study the cognitive structures that underlie
visual working memory. However, it is critical that any statistical
advantage of one model over another reflects a meaningful theo-
retical advantage. To date, studies that have sought to compare
models of working memory have neglected the potential contribu-
tions that stimulus-specific processing can play in such model
comparisons. Here, we show that stimulus-specific variations in
memory precision can be substantial, and can distort the conclu-
sions drawn from model comparison when they are not taken into
account. Looking forward, we believe that explicit characterization
and modeling of these multiple sources of variability will provide
for a more accurate picture of the underlying functional architec-
ture of visual working memory.
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